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Abstract

A2C-Plan is an offline planner that trains a policy network
through Reinforcement Learning (RL) using an Advantage
Actor-Critic (A2C) algorithm. It works in two phases - Train-
ing and Evaluation. In the training phase it trains a deep neu-
ral network (Goodfellow, Bengio, and Courville 2016) for the
problem instance using the A2C algorithm with simulated tra-
jectories and normalized rewards. In the evaluation phase it
uses the trained network to get an action for the current state
by means of a single feed-forward pass.

Introduction
Figure 1 shows the schematic diagram of the entire planning
system. There are three components: RDDLSim (Sanner
2010), the Java RDDL server used for evaluation in the
competition, a C++ dynamic library based on Prost (Keller
and Eyerich 2012), and a Python component consisting
of a PyTorch policy network. Prost is the state-of-the-art
search-based online planner for RDDL domains. The C++
dynamic library based on Prost acts as an intermediate
layer between the RDDL server and the PyTorch network
providing routines for communicating with the server,
running the evaluation loop and simulating trajectories
during the training phase.
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Figure 1: Schematic Diagram

The Python component starts the control flow by call-
ing initConnection() in the dynamic library sending handles
of callback functions train() and test() for training and run-
ning the policy network respectively. The dynamic library
actually initiates (and also terminates) the communication
with the server, receives and parses the RDDL domain and
problem files, initializes the required data structures, and
starts the network training process by invoking the train()
callback function. The nested for loops in the dynamic
library denote the evaluation loop in which it returns an
action for the current state to the server and receives the
reward and next state from the server. At each planning
step the library invokes the test() callback function to run
the policy network with the current state s and returns the
received action â to the server.

Training the Policy Network
The policy network is a fully-connected network with two
hidden layers. The input layer has as many nodes as the
number of state-fluents (n) in the problem, the hidden layers
have 3∗n and 2∗n units respectively, and the final layer has
as many action nodes as the number of ground actions (m)
in the problem plus an additional value node. The hidden
layers have ReLU non-linear units and the output layer is a
softmax layer that computes a probability distribution over
the set of m actions. Figure 2 shows the network architec-
ture for a problem with 2 state-fluents and 4 ground actions.
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Figure 2: Network Architecture



Actor-Critic Algorithms
Actor-Critic methods (Konda and Tsitsiklis 2000) bring
together the advantages of actor-only methods that directly
learn a parameterized policy and critic-only methods that
learn a value function by means of training a critic network
using simulations and using the learned critic values to
make gradient updates to the parameters of the policy
network. In A2C-Plan the actor and critic share the same
network up to the penultimate layer as shown in figure
2. The Advantage Actor-Critic (A2C) algorithm uses the
Q-Advantage of an action (Q(s, a) − V (s)) instead of the
value of a state V (s) to update the actor parameters.

Algorithm 1 below is just meant for outlining the steps
involved for one training episode. Details of the General-
ized Advantage Estimation (GAE) procedure used in the
implementation for updating actor-loss can be found in
(Schulman et al. 2016). The functions critic(s) and actor(s)
return the critic value and actor probabilities computed by
the network respectively, reset(env) resets the environment
and returns the initial state of an episode, sample(P) returns
an action sampled using the probability distribution P com-
puted by the actor network along with the probability pa of
the selected action a, and max and min are the maximum
and minimum reward values for the problem computed or
approximated by Prost. The entropy term e in the actor loss
function encourages exploration.

Algorithm 1 A2C(net, env)
1: repeat
2: Create Arrays V,R,L,E
3: Initialize i← 0, s← reset(env)
4: while not end-of-episode do
5: v ← critic(s), P ← actor(s)
6: (a, pa)← sample(P )
7: l← log(pa)
8: e←

∑
pa∈P log(pa)

9: (s′, r)← next-state(s, a)
10: r ← r/(max−min)
11: V [i]← v, R[i]← r
12: L[i]← l, E[i]← e
13: s← s′, i← i+ 1
14: end while
15: critic-loss← actor-loss← 0
16: v̂ ← 0
17: for i = H . . . 1 do
18: v̂ ← γv̂ +R[i]
19: critic-loss← critic-loss + (V [i]− v̂)2
20: Adv← R[i] + γV [i+ 1].value− V [i].value
21: actor-loss← actor-loss - Adv * L[i] + E[i]
22: end for
23: Minimize critic-loss, actor-loss
24: until time-limit or memory-limit is not reached

Implementation Details
The Python - C++ interface is implemented using the ctypes
library (https://docs.python.org/3/library/ctypes.html). The

important functionalities in Prost used in the dynamic li-
brary are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL
domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The SearchEngine class functions estimating the maxi-
mum and minimum rewards for the problem instance

3. All the classes involved in simulating an action at a given
state to compute the reward and the next state

Parameter Settings:
1. The competition imposes a RAM limit of 4GB for the pro-

cess. RAM usage is periodically monitored in the Python
program while training the network and the training pro-
cess is terminated once a limit of 3.5GB is reached.

2. The total time (T ) available to solve a problem instance
needs to be divided between the training and evaluation
phases leaving enough time for other associated computa-
tions like the initial parsing process. Approximately 70%
of the total time T is set aside for just training the network.
To be precise, an untrained network is run for one-fifth
(15 for the competition) of the total number of episodes
(75 in the competition) to compute a time t and time for
final evaluation (te) is set to 2× t times the total number
of episodes and time for training is set to 75% of T − Te.

3. For domains with action pre-conditions some of the ac-
tions might not be applicable at a given state. When that
happens during training or evaluation an applicable action
with the highest probability is used instead.
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