
The SOGBOFA system in IPC 2018:
Lifted BP for Conformant Approximation of Stochastic Planning

Hao Cui and Roni Khardon
Department of Computer Science, Tufts University, Medford, Massachusetts, USA

Hao.Cui@tufts.edu, roni@cs.tufts.edu

Abstract

The SOGBOFA algorithm estimates the value of an action for
the current state by building an explicit computation graph
capturing an approximation of the value obtained when start-
ing with this action and continuing with a random policy. This
is combined with automatic differentiation over the graph
to search for the best action. This approach was shown to
be competitive in large scale planning problems with fac-
tored state and action spaces. The systems submitted to the
International Planning Competition (IPC) introduce two im-
provements of SOGBOFA. The first improvement builds on
the recently observed connection between SOGBOFA and be-
lief propagation to improve efficiency by lifting its computa-
tion graph, taking inspiration from lifted belief propagation.
The second improves the rollout policy which is used in the
approximate computation graph. Instead of rolling out a tra-
jectory of the random policy, the trajectory actions are opti-
mized at the same time as the initial action. The two variants
submitted to the IPC include both improvements but differ
in how trajectory actions are optimized. In addition, due to
changes in the specification language for the IPC, new facil-
ities for handling action constraints were incorporated in the
system.

Introduction
This paper gives an overview of variants of the SOGBOFA
system that participated in the probabilistic track of the inter-
national Planning Competition (IPC), 2018. SOGBOFA (Cui
and Khardon 2016) extends the well known rollout algo-
rithm (Tesauro and Galperin 1996). The rollout algorithm
uses a simulator to estimate the quality of each possible ac-
tion for the first step by taking that action and then contin-
uing the simulation with some fixed policy. Multiple sim-
ulations are required for each fixed action to get a reliable
estimate. But once this is done one can perform policy im-
provement or just use the best action for the current state.
SOGBOFA improves over this algorithm in two important
ways. The first is that instead of using concrete simula-
tion of trajectories the algorithm builds an explicit computa-
tion graph capturing an approximation of the corresponding
value when rolling out the random policy. Therefore a sin-
gle symbolic simulation suffices. The second is that because

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the simulation is given in an explicit computation graph one
can use automatic differentiation and gradients to search for
the best action, avoiding the action enumeration which is
required by rollout. This approach was shown to be compet-
itive in large scale planning problems with factored state and
action spaces where such enumeration is not feasible.

Two improvements of the SOGBOFA system were added
for the competition. In recent work we have shown that the
computation graph of SOGBOFA calculates exactly the same
solution as the one that would be computed by belief prop-
agation (BP) on the corresponding inference problem (Cui
and Khardon 2018; Cui, Marinescu, and Khardon 2018).
The first improvement uses a Lifted version of SOGBOFA,
taking inspiration from lifted belief propagation. The idea
in lifted BP is to avoid repeated messages during computa-
tion and calculate the result in aggregate. For SOGBOFA this
turns out to be a simple modification of the construction of
the computation graph.

The second improvement uses conformant approxima-
tion. The quality of the approximation of SOGBOFA is lim-
ited by the fact that it uses a random policy for rollout. For
some domains this provides enough information to distin-
guish the best first action but for others this does not work.
The conformant approximation learns a fixed sequence of
actions to be used for rollout from the current state (this is
similar to the plan used in conformant planning, hence the
name for this approximation). The choice of these actions is
optimized simultaneously with the optimization of the first
action, using the same computation graph and gradient com-
putation.

The two systems submitted to the competition use both
improvements, using the lifted graph representation and op-
timizing all action variables simultaneously. The difference
between the two is in how trajectory actions are optimized.
The first system uses fractional values for trajectory action
variables during search whereas the second system projects
them to binary values before evaluation.

IPC 2018 has modified the RDDL (Sanner 2010) speci-
fication of domains by moving action preconditions into a
separate constraints section and adding several other types
of action constraints in that section that must be handled by
the planner. The SOGBOFA entries for the IPC extend the
original system to handle these constructs.

The rest of the paper is structured as follows. The next

section gives an overview of the original SOGBOFA algo-
rithms. The following 3 sections describe lifting, the con-
formant approximation and constraints handling. The final
section briefly discusses competition results.

The Basic SOGBOFA Algorithm
Stochastic planning can be formalized using Markov deci-
sion processes (Puterman 1994) in factored state and action
spaces. In factored spaces (Boutilier, Dean, and Hanks 1995)
the state is specified by a set of variables and the number
of states is exponential in the number of variables. Simi-
larly in factored action spaces an action is specified by a set
of variables. We assume that all state and action variables
are binary. Finite horizon planning can be captured using a
dynamic Bayesian network (DBN) where state and action
variables at each time step are represented explicitly and the
CPTs of variables are given by the transition probabilities.
In off-line planning the task is to compute a policy that op-
timizes the long term reward. In contrast, in on-line plan-
ning we are given a fixed limited time, t seconds, per step
and cannot compute a policy in advance. Instead, given the
current state, the algorithm must decide on the next action
within t seconds. Then the action is performed, a transition
and reward are observed and the algorithm is presented with
the next state. This process repeats and the long term perfor-
mance of the algorithm is evaluated.

AROLLOUT and SOGBOFA perform on-line planning by
estimating the value of initial actions where a fixed rollout
policy, typically a random policy, is used in future steps.
The AROLLOUT algorithm (Cui et al. 2015) introduced the
idea of algebraic simulation to estimate values but optimized
over actions by enumeration. Then Cui and Khardon (2016)
showed how algebraic rollouts can be computed symboli-
cally and that the optimization can be done using automatic
differentiation. The high level structure of SOGBOFA is:

SOGBOFA(S)
1 Qf ← BuildQf(S, timeAllowed)
2 As = { }
3 while time remaining
4 do A← RandomRestart()
5 while time remaining and not converged
6 do D ← CalculateGradient(Qf)
7 A←MakeUpdates(D)
8 A← Projection(A)
9 As.add(SampleConcreteAct(A))

10 action← Best(As)

Overview of the Algorihm: In line 1, we build an expres-
sion graph that represents the approximation of the Q func-
tion. This step also explicitly optimizes a tradeoff between
simulation depth and run time to ensure that enough updates
can be made. Line 4 samples an initial action for the gra-
dient search. Lines 6 to 8 calculate the gradient and make
an update on the aggregate action. Line 9 makes the search
more robust by finding a concrete action induced by the cur-
rent aggregate action and evaluating it explicitly. Line 10
picks the action with the maximum estimate. Line 5 checks

our stopping criterion which allows us to balance gradient
and random exploration. In the following we describe these
steps in more details.
Building a symbolic representation of the Q func-
tion: Finite horizon planning can be translated from
a high level language (e.g., RDDL (Sanner 2010))
to a dynamic Bayesian network (DBN). AROLLOUT
transforms the CPT of a node x into a disjoint sum
form. In particular, the CPT is represented in the form
if(c11|c12...) then p1 ... if(cn1|cn2...) then pn,
where pi is p(x=1) and the cij are conjunctions of parent
values which are are mutually exclusive and exhaustive. It
then performs a forward pass calculating p̂(x), an approx-
imation of the true marginal p(x), for any node x in the
graph. p̂(x) is calculated as a function of p̂(cij), an estimate
of the probability that cij is true, which assumes the parents
are independent. This is done using the following equations
where nodes are processed in the topological order of the
graph:

p̂(x) =
∑
ij

p(x|cij)p̂(cij) =
∑
ij

pip̂(cij) (1)

p̂(cij) =
∏

wk∈cij

p̂(wk)
∏

w̄k∈cij

(1− p̂(wk)). (2)

The following example from (Cui and Khardon 2016) il-
lustrates AROLLOUT and SOGBOFA. The problem has three
state variables s(1), s(2) and s(3), and three action variables
a(1), a(2), a(3) respectively. In addition we have two inter-
mediate variables cond1 and cond2 which are not part of the
state. The transitions and reward are given by the following
RDDL (Sanner 2010) expressions where primed variants of
variables represent the value of the variable after performing
the action.

cond1 = Bernoulli(0.7)
cond2 = Bernoulli(0.5)
s’(1) = if (cond1) then ˜a(3) else false
s’(2) = if (s(1)) then a(2) else false
s’(3) = if (cond2) then s(2) else false
reward = s(1) + s(2) + s(3)

AROLLOUT translates the RDDL code into algebraic ex-
pressions using standard transformations from a logical to a
numerical representation. In our example this yields:

s’(1) = (1-a(3))*0.7
s’(2) = s(1)*a(2)
s’(3) = s(2) * 0.5
r = s(1) + s(2) + s(3)

These expressions are used to calculate an approxima-
tion of marginal distributions over state and reward vari-
ables. The distribution at each time step is approximated us-
ing a product distribution over the state variables. To illus-
trate, assume that the state is s0 = {s(1)=0, s(2)=1, s(3)=0}
which we take to be a product of marginals. At the first
step AROLLOUT uses a concrete action, for example a0 =
{a(1)=1, a(2)=0, a(3)=0}. This gives values for the re-
ward r0 = 0 + 1 + 0 = 1 and state variables s1 =
{s(1)=(1− 0) ∗ 0.7=0.7, s(2)=0 ∗ 0=0, s(3)=1*0.5 = 0.5}.

 s1 s2 s3 Q r a1 a2 a3

 a1 a2 a3

 1/3 1/3 1/3

 +

 +

 +

 * * *

 0 1 0

 0.5
 1

 - 0.7

1

2

STEP

Figure 1: Example of SOGBOFA graph construction.

In future steps it calculates marginals for the action vari-
ables and uses them in a similar manner. For example if
a1 = {a(1)=0.33, a(2)=0.33, a(3)=0.33} we get r1 =
0.7 + 0 + 0.5 = 1.2 and s2 = {s(1)=(1 − 0.33) ∗ 0.7,
s(2)= 0.7 * 0.33, s(3)=0 ∗ 0.5}. Summing the rewards from
all steps gives an estimate of the Q value for a0. AROLLOUT
randomly enumerates values for a0 and then selects the one
with the highest estimate.

The main observation in SOGBOFA is that instead of cal-
culating concrete values, we can use the expressions to con-
struct an explicit directed acyclic graph representing the
computation steps, where the last node represents the ex-
pectation of the cumulative reward. SOGBOFA uses a sym-
bolic representation for the first action and assumes that the
rollout uses the random policy. In our example if the ac-
tion variables are mutually exclusive (such constraints are
used imposed in high level domain descriptions) this gives
marginals of a1 = {a(1)=0.33, a(2)=0.33, a(3)=0.33} over
these variables. The SOGBOFA graph for our example ex-
panded to depth 1 is shown In Figure 1. The bottom layer
represents the current state and action variables. Each node
at the next level represents the expression that AROLLOUT
would have calculated for that marginal. To expand the plan-
ning horizon we simply duplicate the second layer construc-
tion multiple times.

Now, given concrete marginal for the action variables at
the first step, i.e., a0, an evaluation of the graph captures the
same calculation as AROLLOUT.

Dynamic control over simulation depth: In principle we
should build the DAG to the horizon depth. However, if
the DAG is large then evaluation of Qπ(s, a) and gradient
computation are expensive so that the number of actions ex-
plored in the search might be too small. SOGBOFA first esti-
mate the time cost for calculating gradients and performing
updates per node in the graph. It then estimates the poten-
tial graph size as a function of simulation depth. The rollout
depth is chosen to guarantee at least 200 updates on action
marginals.

Random Restarts: A random restart generates a concrete
(binary) legal action in the state.
Calculating the gradient: The main observation is that
once the graph is built, representing Q as a function of ac-
tion variables, we can calculate gradients using the method
of automatic differentiation (Griewank and Walther 2008).
Our implementation uses the reverse accumulation method
since it is more efficient having linear complexity in the size
of the DAG for calculation of all gradients.
Maintaining action constraints: Gradient updates allow
the values of marginal probabilities to violate the [0, 1] range
constraint on marginals as well as explicit constraints on le-
gal actions. The original version of SOGBOFA only allowed
for sum constraints of the form

∑
ai ≤ B. This is typi-

cal, for example, in high level representations that use 1-of-
k representation for actions where at most one bit among a
group of k should be set to 1 or in cases of limited concur-
rency.

To handle this issue we use projected gradient ascent
(Shalev-Shwartz 2012), where parameters are projected into
the legal region after each update. The projection step uses
an iterative procedure from (Wang and Carreira-Perpiñán
2013; Duchi et al. 2008) that supports constraints of the form∑

ai ≤ B. The algorithm repeatedly subtracts the surplus
amount ((

∑
ai−B)/k for k action variables) from all non-

zero entries, clipping at 0, until the surplus is 0.
Optimizing step size for gradient update: Gradient ascent
often works well with a constant step size. However, in some
problems, when the rollout policy is random, the effect of the
first action on the Q value is very small implying that the
gradient is very small and a fixed step size is not suitable.
This also implies that we need to search over a large range
for an appropriate step size. SOGBOFA performs this search
hierarchically. We start with a large fixed range and search
over a grid set of values. Then if the value chosen is the
smallest one tested we recurse to a smaller range.
Sampling concrete Actions: The search assigns numerical
marginal probabilities for each action variable. We need to
select a concrete action from this numerical representation.
In addition the selected action must satisfy the action con-
straints as mentioned above. SOGBOFA uses a greedy heuris-
tic as follows. We first sort action variables by their marginal
probabilities. We then add active action bits as long as the
marginal probability is not lower than marginal probability
of random rollout and the constraints are not violated. For
example, suppose the marginals are {0.8, 0.6, 0.5, 0.1, 0},
B = 3, and we use a threshold of 0.55. Then we have
{a1, a2} as the final action. This procedure is used for se-
lecting the final action to use during online planning.

In addition to the above, we also use action selection dur-
ing the search (in step 9 of the algorithm). The gradient op-
timization performs a continuous search over the discrete
space. This means that the values given by the graph are not
always reliable on the fractional aggregate actions. To add
robustness we associate each aggregate action encountered
in the search with a concrete action chosen as in the previous
paragraph and record the more reliable value of the concrete
action. Search proceeds as usual with the aggregate actions

but final action selection is done using these more reliable
scores for concrete actions.

Stopping Criterion: Our results show that gradient in-
formation is useful. However, getting precise values for
the marginals at local optima is not needed because small
changes are not likely to affect the choice of the concrete
action. We thus use a loose criterion aiming to allow for a
few gradient steps but to quit relatively early so as to al-
low for multiple restarts. Our implementation stops the gra-
dient search if the max change in probability is less than
S = 0.1, that is, ‖Anew − Aold‖1 ≤ 0.1. The result is an
algorithm that combines Monte Carlo search and gradient
based search.

Lifted SOGBOFA

In recent work (Cui and Khardon 2018; Cui, Marinescu, and
Khardon 2018) we showed that the approximate value com-
puted by SOGBOFA is identical to the value that would be
computed by belief propagation. Motivated by that we pro-
posed a lifted planning algorithm that takes inspiration from
lifted BP (Singla and Domingos 2008; Kersting, Ahmadi,
and Natarajan 2009). In Lifted BP, two nodes or factors send
identical messages when all their input messages are iden-
tical and in addition the local factor is identical. With the
computational structure of SOGBOFA this has a clear anal-
ogy. Two nodes in SOGBOFA’s graph are identical when their
parents are identical and the local algebraic expressions cap-
turing the local factors are identical. This suggests a straight-
forward implementation for Lifted SOGBOFA using dynamic
programming.

The lifted algorithm is as follows. We run the algorithm
in exactly the same manner as SOGBOFA except for the con-
struction of the computation graph. (1) When constructing a
node in the explicit computation graph we check if an iden-
tical node, with same parents and same operation, has been
constructed before. If so we return that node. Otherwise we
create a new node in the graph. (2) If we only use the idea
above we may end up with multiple identical edges between
the same two nodes. Such structures are simplified during
construction. In particular, every plus node with k incom-
ing identical edges is turned into a multiply node with
constant multiplier k. Similarly, every multiply node
with k incoming identical edges is turned into a power
node with constant power k. This automatically generates
the counting expressions that are often seen in lifted infer-
ence.

Conformant SOGBOFA

SOGBOFA uses a random policy for trajectory actions, that
is, for actions taken after the first step. In some domains the
value achieved by the random policy is already indicative of
the value of the state it is started from. In these cases SOG-
BOFA is successful. In some domains a random policy masks
any information and one must use a more informed type of
lookahead. For SOGBOFA there is a natural way to form this
idea: one can try to improve the rollout policy. It turns out,
however, that optimizing a policy within the time to select

an action for online planning is not realistic. In addition, be-
cause we only maintain aggregate marginals for states after
the first step, the simulation cannot condition the policy on a
concrete state so using a policy is not necessarily beneficial.
We therefore directly optimize the marginals of the variables
instead of optimizing a policy representation. In other words,
the “rollout policy” is a fixed sequence of actions which is
optimized during planning. This type of solution is often
called conformant planning. Recall that for the first action
we use projection to binary values to improve the search.
We can use the same process for trajectory actions. This is
the the variant CONFORMANT-SOGBOFA-B-IPC18 in the
competition. Alternatively, we can keep the trajectory ac-
tions as fractional values. This is similar to the use of the
random policy, and intuitively it makes more sense for tra-
jectory actions because we are not interested in selecting a
concrete value for them, but instead interested in getting an
aggregate simulation. This is the the variant CONFORMANT-
SOGBOFA-F-IPC18 in the competition. Either way, the
process of evaluating the first action also chooses a confor-
mant plan that best supports that first action. The conformant
plan is only used for the purpose of action evaluation. It is
not used for controlling the MDP. Instead, as always done
in online planning, the process restarts its computation after
the first action has been taken.

The SOGBOFA graph immediately supports this type of
optimization because trajectory action variables are repre-
sented as nodes in the graph. Instead of assigning these
nodes numerical values imposed by the random policy we
retain them as symbolic variables and optimize them along
with the first action. Note that reverse mode automatic dif-
ferentiation supports calculation of gradients w.r.t. all nodes
with the same time complexity so that there is no significant
change to run time. However, in preliminary experiments we
have found that optimizing a large number of action vari-
ables from all time steps requires significantly more gradient
steps to reach a good solution.

Conformant SOGBOFA adjusts for this by modifying the
dynamic depth selection heuristic. As before, we estimate
the cost of gradient computation per node in the graph and
the expected graph size as a function of depth. Our heuristic
here is to select the depth so as to guarantee 200∗2i updates,
where i is the conformant search depth.

Note that in principle we could separate search depth from
conformant depth, for example, optimize actions for the first
few steps and thereafter use the random policy. This can al-
low for a more refined control of the time tradeoff for the
search. However, for the IPC we did not implement such a
scheme. In our submission, we always use the same dynamic
depth and conformant depth.

Handling Constraints
Previous versions of the probabilistic IPC integrated action
preconditions into the transition function. With this, if an ac-
tion is applied in a state where it is not legal it is simply a no-
op and therefore not useful. Action constraints were limited
to the sum constraints discussed above. The current IPC rep-
resents action preconditions as constraints, and if an illegal
action is attempted the planner fails. In addition, the types

of constraints were expanded to include more constraints on
actions.

Our implementation parses the action constraints and han-
dles each type in a separate manner, following the approach
in the previous treatment in SOGBOFA.

First, action preconditions have the form: “for all argu-
ments x, if a(x) is used, then c(x) must be true”, where c(x)
is the precondition. When we identify this form, we embed
it into the transition function to mimic the previous IPC en-
coding. In particular, consider a concrete action bit a(o) for
some concrete objects o. We replace each occurrence of a(o)
in the transition function by a(o)∧c(o). In other words, dur-
ing simulation we assume that illegal actions are no-op.

Second, constraints of the form
∑

ai ≤ B are treated
exactly as before.

The IPC introduced additional types of constraints. The
first includes conditions of the form: “some quantifiers x,
condition(x) → some quantifiers y, actions(x, y)” where
actions(x, y) is a subset of the ground action variables,
and the quantifiers over action arguments and other ob-
jects can be existential or universal as appropriate. When
actions(x, y) include just one action then we have a forced
action. When actions(x, y) represents a disjunction of action
variables, this means that at least one of these actions must
be chosen. A similar situation arises with

∑
ai ≥ 1 which

captures a disjunction and with
∑

ai = 1 which has both the
upper bound and a disjunction. It should be clear the SOG-
BOFA is not well matched for handling general action con-
straints. Our implementation uses the previous methodology
to support the new constraints as follows.

For constraints with forced actions we can evaluate the
condition to a value v. In a concrete state the condition eval-
uates to 0 or 1 and in an aggregate state it evaluates to (an
approximation of) the probability that the condition holds.
We then replace the marginal probability p for for the corre-
sponding ai by p ← max{p, v}. Note that if v = 0 then p
does not change and if v = 1 then p = 1 which means that
action selection algorithm described above will pick this ac-
tion variable first, so we comply with the forced action con-
straint. In an aggregate state we potentially increase p to be
as high as the probability that the condition holds v. Note
that this implementation supports the conformant algorithm
in the same manner as the action of the first step so no dis-
tinction is needed.

Our implementation for an implied disjunction of action
variables, and for an implication with

∑
ai ≥ 1 on the right

hand side is similar. We first evaluate the condition to a value
v. We then pick the ai with the highest marginal probabil-
ity p among the ones in the disjunction and replace it with
max{p, v}. As with forced actions, if the condition is true
then we force at least one of the relevant action variables to
be true as well. With aggregate states we get a correction to
the marginal probabilities on action variables.

Finally we give a separate treatment to constraints where
the condition is always true and the outcome is a disjunc-
tion. For example this includes

∑
ai = 1 without an asso-

ciated condition. If we used the implementation of the pre-
vious paragraph in aggregate states this will force at least
one action variable to be 1 and if the constraint is

∑
ai = 1

the trajectory actions in conformant SOGBOFA will always
use discrete 0,1 values. This will hinder the search that uses
marginal probabilities and gradients which is the main ad-
vantage of our method. Instead, for this type of constraint we
first calculate

∑
pi where pi is the current marginal proba-

bility of ai. If
∑

pi > 1 we use projection as explained
above. If

∑
pi < 1 we add 1−

∑
pi to the largest among the

pi. In this way the constraint is satisfied on the fractional val-
ues but we do not force any specific action variable among
trajectory actions to 1 during the search.

Summary
This paper describes variants of the SOGBOFA system
that participated in the IPC 2018. Two algorithmic exten-
sions were developed including lifting the computation for
speedup and the use of the conformant heuristic to improve
the quality of the search. The new form of action precondi-
tions and action constraints included in the IPC required ex-
tensions to handle forced actions and an implied disjunction
of possible actions. These are naturally implemented within
the current system by modifying calculated marginal proba-
bilities to enforce a logical or probabilistic form of the con-
straints.

Notes on Competition Results
CONFORMANT-SOGBOFA-F-IPC18 was runner up in the
competition. This is despite failures on several of the do-
mains which are discussed next.

The system failed (zero score) in the Wildlife Preserve
domain. This is due to not supporting Enumerable vari-
ables. The No-Enumerable translated domain is large and
the RDDL simulator which is embedded in our system is
stuck while processing the file so that the planner does not
get to start solving the problems.

The system failed (zero score) in the Manufacturer do-
main. This is due to having an unsupported constraint of the
form

∑
ai ≤

∑
sj where ai are action variables and sj are

state variables. This can be supported in the same manner as
other constraints but was not implemented for the competi-
tion.

The system also failed on many instances in Chromatic
Dice and Push Your Luck due to incorrect enforcement of
constraints in boundary cases which reduced its overall score
for these domains.

Bug fixes to these issues will be submitted to the IPC
repository.

In summary, like SOGBOFA, Lifted Conformant SOGBOFA
has an inherent limitation due to the aggregate simulation
that produces approximate values. However, it provides a
good tradeoff between accuracy and performance when the
problems are large and combinatorially challenging so that
other solvers must approximate as well. Forward aggregate
simulation does not interact well with action constraints and
this was a significant challenge in this competition.

Acknowledgments
This work was partly supported by NSF under grant IIS-
1616280.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning under un-
certainty: Structural assumptions and computational leverage. In
Proceedings of the Second European Workshop on Planning, 157–
171.
Cui, H., and Khardon, R. 2016. Online symbolic gradient-based
optimization for factored action MDPs. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence.
Cui, H., and Khardon, R. 2018. Stochastic planning, lifted infer-
ence, and marginal MAP. In Workshop on Planning and Inference
help with AAAI.
Cui, H.; Khardon, R.; Fern, A.; and Tadepalli, P. 2015. Factored
MCTS for large scale stochastic planning. In Proc. of the AAAI
Conference on Artificial Intelligence.
Cui, H.; Marinescu, R.; and Khardon, R. 2018. From stochastic
planning to marginal MAP. In Advances in Neural Information
Processing Systems.
Duchi, J. C.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T. 2008.
Efficient projections onto the l1-ball for learning in high dimen-
sions. In Proceedings of the International Conference on Machine
Learning, 272–279.
Griewank, A., and Walther, A. 2008. Evaluating derivatives - prin-
ciples and techniques of algorithmic differentiation (2. ed.). SIAM.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting belief
propagation. In UAI, 277–284.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. Wiley.
Sanner, S. 2010. Relational dynamic influence diagram language
(rddl): Language description. Unpublished Manuscript. Australian
National University.
Shalev-Shwartz, S. 2012. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning 4(2):107–
194.
Singla, P., and Domingos, P. M. 2008. Lifted first-order belief
propagation. In AAAI.
Tesauro, G., and Galperin, G. R. 1996. On-line policy improve-
ment using monte-carlo search. In Advances in Neural Information
Processing Systems, 1068–1074.
Wang, W., and Carreira-Perpiñán, M. Á. 2013. Projection onto the
probability simplex: An efficient algorithm with a simple proof,
and an application. CoRR/arXiv abs/1309.1541.

