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Abstract

Imitation-Net is an offline planner based on supervised
learning to imitate an expert policy for the problem. It works
in two phases - Training and Evaluation. During the training
phase it creates a training dataset containing trajectories from
an expert policy and trains a deep neural network (Goodfel-
low, Bengio, and Courville 2016) to approximate that pol-
icy. During the evaluation phase it runs the trained network to
get an action for the current state by means of a single feed-
forward pass.

Introduction
Figure 1 shows the schematic diagram of the entire planning
system. There are three components: RDDLSim (Sanner
2010), the Java RDDL server used for evaluation in the
competition, a C++ dynamic library based on Prost (Keller
and Eyerich 2012), and a Python component consisting of
a Tensor Flow policy network. Prost is the state-of-the-art
search-based online planner for RDDL domains. The C++
dynamic library based on Prost acts as an intermediate layer
between the RDDL server and the Tensor Flow network
providing routines for communicating with the server,
running the evaluation loop and simulating trajectories
during the training phase.
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Figure 1: Schematic Diagram

The Python component starts the control flow by call-
ing initConnection() in the dynamic library sending handles

of callback functions train() and test() for training and run-
ning the policy network respectively. The dynamic library
actually initiates (and also terminates) the communication
with the server, receives and parses the RDDL domain and
problem files, initializes the required data structures, and
starts the network training process by invoking the train()
callback function. The nested for loops in the dynamic
library denote the evaluation loop in which it returns an
action for the current state to the server and receives the
reward and next state from the server. At each planning
step the library invokes the test() callback function to run
the policy network with the current state s and returns the
received action â to the server.

The Policy Network
Architecture. The policy network is a sparsely connected
structure with three hidden layers. The input layer has
as many nodes as the number of state-fluents (n) in the
problem, the hidden layers have C ∗n nodes, and the output
layer has as many nodes as the number of action-fluents in
the problem (m). The hidden layers have ReLU non-linear
units. The output layer has sigmoid non-linear units for
the action nodes, thereby supporting factored action spaces
directly. The network is not fully connected except at the
final layer and connections going into the hidden layers
are customized for each problem based on the transition
function for state-fluents in the RDDL description. The
input nodes represent state-fluents and the nodes in the
hidden layers are clustered into n groups of C nodes each
with each group representing a state-fluent. A hidden node
corresponding to a state-fluent receives connections only
from its parent nodes (in the previous layer) according to
the state-fluent transition dynamics very much resembling
a Dynamic Bayesian Network (DBN) structure. Figure 2
shows a sparse network for a problem with 4 state-fluents
and 5 action-fluents for C = 1 and figure 3 roughly shows
the same network for C = 5. The parameter C is called
channels in the same sense as in convolutional neural
networks. Reference (Issakkimuthu, Fern, and Tadepalli
2018) has more details on this sparse architecture.

Training Data Generation As shown in the schematic dia-
gram in figure 1 the procedure for training data generation is
kept within the C++ dynamic library mainly because it uses



St
at

e 
F

lu
en

ts
  (

In
pu

t 
L

ay
er

)

A
ct

io
n

 F
lu

en
ts

 (
Si

gm
oi

d 
O

ut
pu

t 
L

ay
er

)

Hidden layers with ReLU units

Figure 2: Network Architecture with one channel
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Figure 3: Network Architecture with 5 channels

some of the functionalities already available in Prost. The
expert policy to imitate is the Rollout-of-Random policy,
which is a one-step greedy policy over the value function
of the random policy, i.e., the policy next in sequence to
the random policy in the regular policy iteration sequence.
Trajectories of the Rollout-of-Random policy are generated
by estimating Qπ(s, a) for each action a ∈ As at state s
for the random policy π and taking the best action to move
to the next state s′ from which the process is repeated.
Therefore, states in the training set can be said to follow the
state distribution of Rollout-of-Random.

Training The network is written in Tensor Flow and
trained using Stochastic Gradient Descent (SGD) with a
batch size of 10 to minimize the cross-entropy loss using the
built-in Adam optimizer. During evaluation the probabilities
of action-fluents computed by the trained network are used
to compute the probabilities of individual applicable actions
and the one with the highest probability is selected.

Implementation Details
The Python - C++ interface is implemented using the ctypes
library (https://docs.python.org/3/library/ctypes.html). The
important functionalities in Prost used in the dynamic li-
brary are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL

domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The RandomWalk class for simulating a trajectory from
state s starting with action a and then following the ran-
dom policy π for h steps accounting for steps 12 through
19 in algorithm ??

3. The IDS class to estimate the best rollout horizon h for
the problem by means of iterative deepening search

Parameter Settings:
1. The competition imposes a RAM limit of 4GB for the

planner. RAM usage is periodically monitored in the C++
function that creates the training dataset and the function
is terminated once a limit of 2.5GB is reached. RAM us-
age is also monitored in the Python program while train-
ing the network and the training process is terminated
once a limit of 3.5GB is reached.

2. The maximum number of training records in the dataset
is limited to 30000, since larger datasets cannot be pro-
cessed in the training process in limited time in the com-
petition setting. The rollout horizon h for training data
generation is initialized to the minimum of 5 or the value
returned by the IDS class.

3. The total time (T ) available to solve a problem instance
needs to be divided between the training and evaluation
phases leaving enough time for other associated computa-
tions like the initial parsing process. Approximately 70%
of the total time T is set aside for just training the network.
To be precise, an untrained network is run for one-fifth
(15 for the competition) of the total number of episodes
(75 in the competition) to compute a time t and time for
final evaluation (te) is set to 2× t times the total number
of episodes and time for data generation and training is
set to 80% of T − Te out of which 30% is alloted for data
generation and 70% is alloted for training.
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