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The SOGBOFA system in IPC 2018:
Lifted BP for Conformant Approximation of Stochastic Planning

Hao Cui and Roni Khardon
Department of Computer Science, Tufts University, Medford, Massachusetts, USA

Hao.Cui@tufts.edu, roni@cs.tufts.edu

Abstract

The SOGBOFA algorithm estimates the value of an action for
the current state by building an explicit computation graph
capturing an approximation of the value obtained when start-
ing with this action and continuing with a random policy. This
is combined with automatic differentiation over the graph
to search for the best action. This approach was shown to
be competitive in large scale planning problems with fac-
tored state and action spaces. The systems submitted to the
International Planning Competition (IPC) introduce two im-
provements of SOGBOFA. The first improvement builds on
the recently observed connection between SOGBOFA and be-
lief propagation to improve efficiency by lifting its computa-
tion graph, taking inspiration from lifted belief propagation.
The second improves the rollout policy which is used in the
approximate computation graph. Instead of rolling out a tra-
jectory of the random policy, the trajectory actions are opti-
mized at the same time as the initial action. The two variants
submitted to the IPC include both improvements but differ
in how trajectory actions are optimized. In addition, due to
changes in the specification language for the IPC, new facil-
ities for handling action constraints were incorporated in the
system.

Introduction
This paper gives an overview of variants of the SOGBOFA
system that participated in the probabilistic track of the inter-
national Planning Competition (IPC), 2018. SOGBOFA (Cui
and Khardon 2016) extends the well known rollout algo-
rithm (Tesauro and Galperin 1996). The rollout algorithm
uses a simulator to estimate the quality of each possible ac-
tion for the first step by taking that action and then contin-
uing the simulation with some fixed policy. Multiple sim-
ulations are required for each fixed action to get a reliable
estimate. But once this is done one can perform policy im-
provement or just use the best action for the current state.
SOGBOFA improves over this algorithm in two important
ways. The first is that instead of using concrete simula-
tion of trajectories the algorithm builds an explicit computa-
tion graph capturing an approximation of the corresponding
value when rolling out the random policy. Therefore a sin-
gle symbolic simulation suffices. The second is that because
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the simulation is given in an explicit computation graph one
can use automatic differentiation and gradients to search for
the best action, avoiding the action enumeration which is
required by rollout. This approach was shown to be compet-
itive in large scale planning problems with factored state and
action spaces where such enumeration is not feasible.

Two improvements of the SOGBOFA system were added
for the competition. In recent work we have shown that the
computation graph of SOGBOFA calculates exactly the same
solution as the one that would be computed by belief prop-
agation (BP) on the corresponding inference problem (Cui
and Khardon 2018; Cui, Marinescu, and Khardon 2018).
The first improvement uses a Lifted version of SOGBOFA,
taking inspiration from lifted belief propagation. The idea
in lifted BP is to avoid repeated messages during computa-
tion and calculate the result in aggregate. For SOGBOFA this
turns out to be a simple modification of the construction of
the computation graph.

The second improvement uses conformant approxima-
tion. The quality of the approximation of SOGBOFA is lim-
ited by the fact that it uses a random policy for rollout. For
some domains this provides enough information to distin-
guish the best first action but for others this does not work.
The conformant approximation learns a fixed sequence of
actions to be used for rollout from the current state (this is
similar to the plan used in conformant planning, hence the
name for this approximation). The choice of these actions is
optimized simultaneously with the optimization of the first
action, using the same computation graph and gradient com-
putation.

The two systems submitted to the competition use both
improvements, using the lifted graph representation and op-
timizing all action variables simultaneously. The difference
between the two is in how trajectory actions are optimized.
The first system uses fractional values for trajectory action
variables during search whereas the second system projects
them to binary values before evaluation.

IPC 2018 has modified the RDDL (Sanner 2010) speci-
fication of domains by moving action preconditions into a
separate constraints section and adding several other types
of action constraints in that section that must be handled by
the planner. The SOGBOFA entries for the IPC extend the
original system to handle these constructs.

The rest of the paper is structured as follows. The next
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section gives an overview of the original SOGBOFA algo-
rithms. The following 3 sections describe lifting, the con-
formant approximation and constraints handling. The final
section briefly discusses competition results.

The Basic SOGBOFA Algorithm
Stochastic planning can be formalized using Markov deci-
sion processes (Puterman 1994) in factored state and action
spaces. In factored spaces (Boutilier, Dean, and Hanks 1995)
the state is specified by a set of variables and the number
of states is exponential in the number of variables. Simi-
larly in factored action spaces an action is specified by a set
of variables. We assume that all state and action variables
are binary. Finite horizon planning can be captured using a
dynamic Bayesian network (DBN) where state and action
variables at each time step are represented explicitly and the
CPTs of variables are given by the transition probabilities.
In off-line planning the task is to compute a policy that op-
timizes the long term reward. In contrast, in on-line plan-
ning we are given a fixed limited time, t seconds, per step
and cannot compute a policy in advance. Instead, given the
current state, the algorithm must decide on the next action
within t seconds. Then the action is performed, a transition
and reward are observed and the algorithm is presented with
the next state. This process repeats and the long term perfor-
mance of the algorithm is evaluated.

AROLLOUT and SOGBOFA perform on-line planning by
estimating the value of initial actions where a fixed rollout
policy, typically a random policy, is used in future steps.
The AROLLOUT algorithm (Cui et al. 2015) introduced the
idea of algebraic simulation to estimate values but optimized
over actions by enumeration. Then Cui and Khardon (2016)
showed how algebraic rollouts can be computed symboli-
cally and that the optimization can be done using automatic
differentiation. The high level structure of SOGBOFA is:

SOGBOFA(S)
1 Qf ← BuildQf(S, timeAllowed)
2 As = { }
3 while time remaining
4 do A← RandomRestart()
5 while time remaining and not converged
6 do D ← CalculateGradient(Qf)
7 A←MakeUpdates(D)
8 A← Projection(A)
9 As.add(SampleConcreteAct(A))

10 action← Best(As)

Overview of the Algorihm: In line 1, we build an expres-
sion graph that represents the approximation of the Q func-
tion. This step also explicitly optimizes a tradeoff between
simulation depth and run time to ensure that enough updates
can be made. Line 4 samples an initial action for the gra-
dient search. Lines 6 to 8 calculate the gradient and make
an update on the aggregate action. Line 9 makes the search
more robust by finding a concrete action induced by the cur-
rent aggregate action and evaluating it explicitly. Line 10
picks the action with the maximum estimate. Line 5 checks

our stopping criterion which allows us to balance gradient
and random exploration. In the following we describe these
steps in more details.
Building a symbolic representation of the Q func-
tion: Finite horizon planning can be translated from
a high level language (e.g., RDDL (Sanner 2010))
to a dynamic Bayesian network (DBN). AROLLOUT
transforms the CPT of a node x into a disjoint sum
form. In particular, the CPT is represented in the form
if(c11|c12...) then p1 ... if(cn1|cn2...) then pn,
where pi is p(x=1) and the cij are conjunctions of parent
values which are are mutually exclusive and exhaustive. It
then performs a forward pass calculating p̂(x), an approx-
imation of the true marginal p(x), for any node x in the
graph. p̂(x) is calculated as a function of p̂(cij), an estimate
of the probability that cij is true, which assumes the parents
are independent. This is done using the following equations
where nodes are processed in the topological order of the
graph:

p̂(x) =
∑

ij

p(x|cij)p̂(cij) =
∑

ij

pip̂(cij) (1)

p̂(cij) =
∏

wk∈cij
p̂(wk)

∏

w̄k∈cij
(1− p̂(wk)). (2)

The following example from (Cui and Khardon 2016) il-
lustrates AROLLOUT and SOGBOFA. The problem has three
state variables s(1), s(2) and s(3), and three action variables
a(1), a(2), a(3) respectively. In addition we have two inter-
mediate variables cond1 and cond2 which are not part of the
state. The transitions and reward are given by the following
RDDL (Sanner 2010) expressions where primed variants of
variables represent the value of the variable after performing
the action.

cond1 = Bernoulli(0.7)
cond2 = Bernoulli(0.5)
s’(1) = if (cond1) then ˜a(3) else false
s’(2) = if (s(1)) then a(2) else false
s’(3) = if (cond2) then s(2) else false
reward = s(1) + s(2) + s(3)

AROLLOUT translates the RDDL code into algebraic ex-
pressions using standard transformations from a logical to a
numerical representation. In our example this yields:

s’(1) = (1-a(3))*0.7
s’(2) = s(1)*a(2)
s’(3) = s(2) * 0.5
r = s(1) + s(2) + s(3)

These expressions are used to calculate an approxima-
tion of marginal distributions over state and reward vari-
ables. The distribution at each time step is approximated us-
ing a product distribution over the state variables. To illus-
trate, assume that the state is s0 = {s(1)=0, s(2)=1, s(3)=0}
which we take to be a product of marginals. At the first
step AROLLOUT uses a concrete action, for example a0 =
{a(1)=1, a(2)=0, a(3)=0}. This gives values for the re-
ward r0 = 0 + 1 + 0 = 1 and state variables s1 =
{s(1)=(1− 0) ∗ 0.7=0.7, s(2)=0 ∗ 0=0, s(3)=1*0.5 = 0.5}.
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Figure 1: Example of SOGBOFA graph construction.

In future steps it calculates marginals for the action vari-
ables and uses them in a similar manner. For example if
a1 = {a(1)=0.33, a(2)=0.33, a(3)=0.33} we get r1 =
0.7 + 0 + 0.5 = 1.2 and s2 = {s(1)=(1 − 0.33) ∗ 0.7,
s(2)= 0.7 * 0.33, s(3)=0 ∗ 0.5}. Summing the rewards from
all steps gives an estimate of the Q value for a0. AROLLOUT
randomly enumerates values for a0 and then selects the one
with the highest estimate.

The main observation in SOGBOFA is that instead of cal-
culating concrete values, we can use the expressions to con-
struct an explicit directed acyclic graph representing the
computation steps, where the last node represents the ex-
pectation of the cumulative reward. SOGBOFA uses a sym-
bolic representation for the first action and assumes that the
rollout uses the random policy. In our example if the ac-
tion variables are mutually exclusive (such constraints are
used imposed in high level domain descriptions) this gives
marginals of a1 = {a(1)=0.33, a(2)=0.33, a(3)=0.33} over
these variables. The SOGBOFA graph for our example ex-
panded to depth 1 is shown In Figure 1. The bottom layer
represents the current state and action variables. Each node
at the next level represents the expression that AROLLOUT
would have calculated for that marginal. To expand the plan-
ning horizon we simply duplicate the second layer construc-
tion multiple times.

Now, given concrete marginal for the action variables at
the first step, i.e., a0, an evaluation of the graph captures the
same calculation as AROLLOUT.

Dynamic control over simulation depth: In principle we
should build the DAG to the horizon depth. However, if
the DAG is large then evaluation of Qπ(s, a) and gradient
computation are expensive so that the number of actions ex-
plored in the search might be too small. SOGBOFA first esti-
mate the time cost for calculating gradients and performing
updates per node in the graph. It then estimates the poten-
tial graph size as a function of simulation depth. The rollout
depth is chosen to guarantee at least 200 updates on action
marginals.

Random Restarts: A random restart generates a concrete
(binary) legal action in the state.
Calculating the gradient: The main observation is that
once the graph is built, representing Q as a function of ac-
tion variables, we can calculate gradients using the method
of automatic differentiation (Griewank and Walther 2008).
Our implementation uses the reverse accumulation method
since it is more efficient having linear complexity in the size
of the DAG for calculation of all gradients.
Maintaining action constraints: Gradient updates allow
the values of marginal probabilities to violate the [0, 1] range
constraint on marginals as well as explicit constraints on le-
gal actions. The original version of SOGBOFA only allowed
for sum constraints of the form

∑
ai ≤ B. This is typi-

cal, for example, in high level representations that use 1-of-
k representation for actions where at most one bit among a
group of k should be set to 1 or in cases of limited concur-
rency.

To handle this issue we use projected gradient ascent
(Shalev-Shwartz 2012), where parameters are projected into
the legal region after each update. The projection step uses
an iterative procedure from (Wang and Carreira-Perpiñán
2013; Duchi et al. 2008) that supports constraints of the form∑

ai ≤ B. The algorithm repeatedly subtracts the surplus
amount ((

∑
ai−B)/k for k action variables) from all non-

zero entries, clipping at 0, until the surplus is 0.
Optimizing step size for gradient update: Gradient ascent
often works well with a constant step size. However, in some
problems, when the rollout policy is random, the effect of the
first action on the Q value is very small implying that the
gradient is very small and a fixed step size is not suitable.
This also implies that we need to search over a large range
for an appropriate step size. SOGBOFA performs this search
hierarchically. We start with a large fixed range and search
over a grid set of values. Then if the value chosen is the
smallest one tested we recurse to a smaller range.
Sampling concrete Actions: The search assigns numerical
marginal probabilities for each action variable. We need to
select a concrete action from this numerical representation.
In addition the selected action must satisfy the action con-
straints as mentioned above. SOGBOFA uses a greedy heuris-
tic as follows. We first sort action variables by their marginal
probabilities. We then add active action bits as long as the
marginal probability is not lower than marginal probability
of random rollout and the constraints are not violated. For
example, suppose the marginals are {0.8, 0.6, 0.5, 0.1, 0},
B = 3, and we use a threshold of 0.55. Then we have
{a1, a2} as the final action. This procedure is used for se-
lecting the final action to use during online planning.

In addition to the above, we also use action selection dur-
ing the search (in step 9 of the algorithm). The gradient op-
timization performs a continuous search over the discrete
space. This means that the values given by the graph are not
always reliable on the fractional aggregate actions. To add
robustness we associate each aggregate action encountered
in the search with a concrete action chosen as in the previous
paragraph and record the more reliable value of the concrete
action. Search proceeds as usual with the aggregate actions
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but final action selection is done using these more reliable
scores for concrete actions.

Stopping Criterion: Our results show that gradient in-
formation is useful. However, getting precise values for
the marginals at local optima is not needed because small
changes are not likely to affect the choice of the concrete
action. We thus use a loose criterion aiming to allow for a
few gradient steps but to quit relatively early so as to al-
low for multiple restarts. Our implementation stops the gra-
dient search if the max change in probability is less than
S = 0.1, that is, ‖Anew − Aold‖1 ≤ 0.1. The result is an
algorithm that combines Monte Carlo search and gradient
based search.

Lifted SOGBOFA

In recent work (Cui and Khardon 2018; Cui, Marinescu, and
Khardon 2018) we showed that the approximate value com-
puted by SOGBOFA is identical to the value that would be
computed by belief propagation. Motivated by that we pro-
posed a lifted planning algorithm that takes inspiration from
lifted BP (Singla and Domingos 2008; Kersting, Ahmadi,
and Natarajan 2009). In Lifted BP, two nodes or factors send
identical messages when all their input messages are iden-
tical and in addition the local factor is identical. With the
computational structure of SOGBOFA this has a clear anal-
ogy. Two nodes in SOGBOFA’s graph are identical when their
parents are identical and the local algebraic expressions cap-
turing the local factors are identical. This suggests a straight-
forward implementation for Lifted SOGBOFA using dynamic
programming.

The lifted algorithm is as follows. We run the algorithm
in exactly the same manner as SOGBOFA except for the con-
struction of the computation graph. (1) When constructing a
node in the explicit computation graph we check if an iden-
tical node, with same parents and same operation, has been
constructed before. If so we return that node. Otherwise we
create a new node in the graph. (2) If we only use the idea
above we may end up with multiple identical edges between
the same two nodes. Such structures are simplified during
construction. In particular, every plus node with k incom-
ing identical edges is turned into a multiply node with
constant multiplier k. Similarly, every multiply node
with k incoming identical edges is turned into a power
node with constant power k. This automatically generates
the counting expressions that are often seen in lifted infer-
ence.

Conformant SOGBOFA

SOGBOFA uses a random policy for trajectory actions, that
is, for actions taken after the first step. In some domains the
value achieved by the random policy is already indicative of
the value of the state it is started from. In these cases SOG-
BOFA is successful. In some domains a random policy masks
any information and one must use a more informed type of
lookahead. For SOGBOFA there is a natural way to form this
idea: one can try to improve the rollout policy. It turns out,
however, that optimizing a policy within the time to select

an action for online planning is not realistic. In addition, be-
cause we only maintain aggregate marginals for states after
the first step, the simulation cannot condition the policy on a
concrete state so using a policy is not necessarily beneficial.
We therefore directly optimize the marginals of the variables
instead of optimizing a policy representation. In other words,
the “rollout policy” is a fixed sequence of actions which is
optimized during planning. This type of solution is often
called conformant planning. Recall that for the first action
we use projection to binary values to improve the search.
We can use the same process for trajectory actions. This is
the the variant CONFORMANT-SOGBOFA-B-IPC18 in the
competition. Alternatively, we can keep the trajectory ac-
tions as fractional values. This is similar to the use of the
random policy, and intuitively it makes more sense for tra-
jectory actions because we are not interested in selecting a
concrete value for them, but instead interested in getting an
aggregate simulation. This is the the variant CONFORMANT-
SOGBOFA-F-IPC18 in the competition. Either way, the
process of evaluating the first action also chooses a confor-
mant plan that best supports that first action. The conformant
plan is only used for the purpose of action evaluation. It is
not used for controlling the MDP. Instead, as always done
in online planning, the process restarts its computation after
the first action has been taken.

The SOGBOFA graph immediately supports this type of
optimization because trajectory action variables are repre-
sented as nodes in the graph. Instead of assigning these
nodes numerical values imposed by the random policy we
retain them as symbolic variables and optimize them along
with the first action. Note that reverse mode automatic dif-
ferentiation supports calculation of gradients w.r.t. all nodes
with the same time complexity so that there is no significant
change to run time. However, in preliminary experiments we
have found that optimizing a large number of action vari-
ables from all time steps requires significantly more gradient
steps to reach a good solution.

Conformant SOGBOFA adjusts for this by modifying the
dynamic depth selection heuristic. As before, we estimate
the cost of gradient computation per node in the graph and
the expected graph size as a function of depth. Our heuristic
here is to select the depth so as to guarantee 200∗2i updates,
where i is the conformant search depth.

Note that in principle we could separate search depth from
conformant depth, for example, optimize actions for the first
few steps and thereafter use the random policy. This can al-
low for a more refined control of the time tradeoff for the
search. However, for the IPC we did not implement such a
scheme. In our submission, we always use the same dynamic
depth and conformant depth.

Handling Constraints
Previous versions of the probabilistic IPC integrated action
preconditions into the transition function. With this, if an ac-
tion is applied in a state where it is not legal it is simply a no-
op and therefore not useful. Action constraints were limited
to the sum constraints discussed above. The current IPC rep-
resents action preconditions as constraints, and if an illegal
action is attempted the planner fails. In addition, the types
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of constraints were expanded to include more constraints on
actions.

Our implementation parses the action constraints and han-
dles each type in a separate manner, following the approach
in the previous treatment in SOGBOFA.

First, action preconditions have the form: “for all argu-
ments x, if a(x) is used, then c(x) must be true”, where c(x)
is the precondition. When we identify this form, we embed
it into the transition function to mimic the previous IPC en-
coding. In particular, consider a concrete action bit a(o) for
some concrete objects o. We replace each occurrence of a(o)
in the transition function by a(o)∧c(o). In other words, dur-
ing simulation we assume that illegal actions are no-op.

Second, constraints of the form
∑

ai ≤ B are treated
exactly as before.

The IPC introduced additional types of constraints. The
first includes conditions of the form: “some quantifiers x,
condition(x) → some quantifiers y, actions(x, y)” where
actions(x, y) is a subset of the ground action variables,
and the quantifiers over action arguments and other ob-
jects can be existential or universal as appropriate. When
actions(x, y) include just one action then we have a forced
action. When actions(x, y) represents a disjunction of action
variables, this means that at least one of these actions must
be chosen. A similar situation arises with

∑
ai ≥ 1 which

captures a disjunction and with
∑

ai = 1 which has both the
upper bound and a disjunction. It should be clear the SOG-
BOFA is not well matched for handling general action con-
straints. Our implementation uses the previous methodology
to support the new constraints as follows.

For constraints with forced actions we can evaluate the
condition to a value v. In a concrete state the condition eval-
uates to 0 or 1 and in an aggregate state it evaluates to (an
approximation of) the probability that the condition holds.
We then replace the marginal probability p for for the corre-
sponding ai by p ← max{p, v}. Note that if v = 0 then p
does not change and if v = 1 then p = 1 which means that
action selection algorithm described above will pick this ac-
tion variable first, so we comply with the forced action con-
straint. In an aggregate state we potentially increase p to be
as high as the probability that the condition holds v. Note
that this implementation supports the conformant algorithm
in the same manner as the action of the first step so no dis-
tinction is needed.

Our implementation for an implied disjunction of action
variables, and for an implication with

∑
ai ≥ 1 on the right

hand side is similar. We first evaluate the condition to a value
v. We then pick the ai with the highest marginal probabil-
ity p among the ones in the disjunction and replace it with
max{p, v}. As with forced actions, if the condition is true
then we force at least one of the relevant action variables to
be true as well. With aggregate states we get a correction to
the marginal probabilities on action variables.

Finally we give a separate treatment to constraints where
the condition is always true and the outcome is a disjunc-
tion. For example this includes

∑
ai = 1 without an asso-

ciated condition. If we used the implementation of the pre-
vious paragraph in aggregate states this will force at least
one action variable to be 1 and if the constraint is

∑
ai = 1

the trajectory actions in conformant SOGBOFA will always
use discrete 0,1 values. This will hinder the search that uses
marginal probabilities and gradients which is the main ad-
vantage of our method. Instead, for this type of constraint we
first calculate

∑
pi where pi is the current marginal proba-

bility of ai. If
∑

pi > 1 we use projection as explained
above. If

∑
pi < 1 we add 1−∑ pi to the largest among the

pi. In this way the constraint is satisfied on the fractional val-
ues but we do not force any specific action variable among
trajectory actions to 1 during the search.

Summary
This paper describes variants of the SOGBOFA system
that participated in the IPC 2018. Two algorithmic exten-
sions were developed including lifting the computation for
speedup and the use of the conformant heuristic to improve
the quality of the search. The new form of action precondi-
tions and action constraints included in the IPC required ex-
tensions to handle forced actions and an implied disjunction
of possible actions. These are naturally implemented within
the current system by modifying calculated marginal proba-
bilities to enforce a logical or probabilistic form of the con-
straints.

Notes on Competition Results
CONFORMANT-SOGBOFA-F-IPC18 was runner up in the
competition. This is despite failures on several of the do-
mains which are discussed next.

The system failed (zero score) in the Wildlife Preserve
domain. This is due to not supporting Enumerable vari-
ables. The No-Enumerable translated domain is large and
the RDDL simulator which is embedded in our system is
stuck while processing the file so that the planner does not
get to start solving the problems.

The system failed (zero score) in the Manufacturer do-
main. This is due to having an unsupported constraint of the
form

∑
ai ≤

∑
sj where ai are action variables and sj are

state variables. This can be supported in the same manner as
other constraints but was not implemented for the competi-
tion.

The system also failed on many instances in Chromatic
Dice and Push Your Luck due to incorrect enforcement of
constraints in boundary cases which reduced its overall score
for these domains.

Bug fixes to these issues will be submitted to the IPC
repository.

In summary, like SOGBOFA, Lifted Conformant SOGBOFA
has an inherent limitation due to the aggregate simulation
that produces approximate values. However, it provides a
good tradeoff between accuracy and performance when the
problems are large and combinatorially challenging so that
other solvers must approximate as well. Forward aggregate
simulation does not interact well with action constraints and
this was a significant challenge in this competition.
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Imitation-Net: A Supervised Learning Planner

Alan Fern, Murugeswari Issakkimuthu and Prasad Tadepalli
School of EECS, Oregon State University

Corvallis, OR 97331, USA

Abstract

Imitation-Net is an offline planner based on supervised
learning to imitate an expert policy for the problem. It works
in two phases - Training and Evaluation. During the training
phase it creates a training dataset containing trajectories from
an expert policy and trains a deep neural network (Goodfel-
low, Bengio, and Courville 2016) to approximate that pol-
icy. During the evaluation phase it runs the trained network to
get an action for the current state by means of a single feed-
forward pass.

Introduction
Figure 1 shows the schematic diagram of the entire planning
system. There are three components: RDDLSim (Sanner
2010), the Java RDDL server used for evaluation in the
competition, a C++ dynamic library based on Prost (Keller
and Eyerich 2012), and a Python component consisting of
a Tensor Flow policy network. Prost is the state-of-the-art
search-based online planner for RDDL domains. The C++
dynamic library based on Prost acts as an intermediate layer
between the RDDL server and the Tensor Flow network
providing routines for communicating with the server,
running the evaluation loop and simulating trajectories
during the training phase.

RDDLSim Server (Java)

Prost-based C++ Dynamic Library

Initiate Connection
Create Dataset
trainNetwork()

for each round:
  for each step:
    ...
      getAction(state)
    ...
  end-for
end-for

Close Connection

state(s)
reward(r)

action(a)

initConnection()

doAction()

Deep Network (Python)

Library Interface

Initialize

Train Network

Run Network

simulate action

Start here 

Figure 1: Schematic Diagram

The Python component starts the control flow by call-
ing initConnection() in the dynamic library sending handles

of callback functions train() and test() for training and run-
ning the policy network respectively. The dynamic library
actually initiates (and also terminates) the communication
with the server, receives and parses the RDDL domain and
problem files, initializes the required data structures, and
starts the network training process by invoking the train()
callback function. The nested for loops in the dynamic
library denote the evaluation loop in which it returns an
action for the current state to the server and receives the
reward and next state from the server. At each planning
step the library invokes the test() callback function to run
the policy network with the current state s and returns the
received action â to the server.

The Policy Network
Architecture. The policy network is a sparsely connected
structure with three hidden layers. The input layer has
as many nodes as the number of state-fluents (n) in the
problem, the hidden layers have C ∗n nodes, and the output
layer has as many nodes as the number of action-fluents in
the problem (m). The hidden layers have ReLU non-linear
units. The output layer has sigmoid non-linear units for
the action nodes, thereby supporting factored action spaces
directly. The network is not fully connected except at the
final layer and connections going into the hidden layers
are customized for each problem based on the transition
function for state-fluents in the RDDL description. The
input nodes represent state-fluents and the nodes in the
hidden layers are clustered into n groups of C nodes each
with each group representing a state-fluent. A hidden node
corresponding to a state-fluent receives connections only
from its parent nodes (in the previous layer) according to
the state-fluent transition dynamics very much resembling
a Dynamic Bayesian Network (DBN) structure. Figure 2
shows a sparse network for a problem with 4 state-fluents
and 5 action-fluents for C = 1 and figure 3 roughly shows
the same network for C = 5. The parameter C is called
channels in the same sense as in convolutional neural
networks. Reference (Issakkimuthu, Fern, and Tadepalli
2018) has more details on this sparse architecture.

Training Data Generation As shown in the schematic dia-
gram in figure 1 the procedure for training data generation is
kept within the C++ dynamic library mainly because it uses
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Figure 2: Network Architecture with one channel
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Figure 3: Network Architecture with 5 channels

some of the functionalities already available in Prost. The
expert policy to imitate is the Rollout-of-Random policy,
which is a one-step greedy policy over the value function
of the random policy, i.e., the policy next in sequence to
the random policy in the regular policy iteration sequence.
Trajectories of the Rollout-of-Random policy are generated
by estimating Qπ(s, a) for each action a ∈ As at state s
for the random policy π and taking the best action to move
to the next state s′ from which the process is repeated.
Therefore, states in the training set can be said to follow the
state distribution of Rollout-of-Random.

Training The network is written in Tensor Flow and
trained using Stochastic Gradient Descent (SGD) with a
batch size of 10 to minimize the cross-entropy loss using the
built-in Adam optimizer. During evaluation the probabilities
of action-fluents computed by the trained network are used
to compute the probabilities of individual applicable actions
and the one with the highest probability is selected.

Implementation Details
The Python - C++ interface is implemented using the ctypes
library (https://docs.python.org/3/library/ctypes.html). The
important functionalities in Prost used in the dynamic li-
brary are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL

domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The RandomWalk class for simulating a trajectory from
state s starting with action a and then following the ran-
dom policy π for h steps accounting for steps 12 through
19 in algorithm ??

3. The IDS class to estimate the best rollout horizon h for
the problem by means of iterative deepening search

Parameter Settings:
1. The competition imposes a RAM limit of 4GB for the

planner. RAM usage is periodically monitored in the C++
function that creates the training dataset and the function
is terminated once a limit of 2.5GB is reached. RAM us-
age is also monitored in the Python program while train-
ing the network and the training process is terminated
once a limit of 3.5GB is reached.

2. The maximum number of training records in the dataset
is limited to 30000, since larger datasets cannot be pro-
cessed in the training process in limited time in the com-
petition setting. The rollout horizon h for training data
generation is initialized to the minimum of 5 or the value
returned by the IDS class.

3. The total time (T ) available to solve a problem instance
needs to be divided between the training and evaluation
phases leaving enough time for other associated computa-
tions like the initial parsing process. Approximately 70%
of the total time T is set aside for just training the network.
To be precise, an untrained network is run for one-fifth
(15 for the competition) of the total number of episodes
(75 in the competition) to compute a time t and time for
final evaluation (te) is set to 2× t times the total number
of episodes and time for data generation and training is
set to 80% of T − Te out of which 30% is alloted for data
generation and 70% is alloted for training.
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Random-Bandit: An Online Planner

Alan Fern, Murugeswari Issakkimuthu and Prasad Tadepalli
School of EECS, Oregon State University

Corvallis, OR 97331, USA

Abstract

Random-Bandit is an online planner based on the ε-greedy
algorithm for multi-armed bandit problems (Kuleshov and
Precup 2000). Every planning step is regarded as an inde-
pendent multi-armed bandit problem at the current state with
the set of applicable actions as the arms of the bandit. The
ε-greedy algorithm for the multi-armed bandit problem esti-
mates the average reward of each arm by pulling the current
best arm with probability 1−ε and one of the remaining arms
with probability ε, and finally returns the arm with the highest
average reward. The ε-greedy algorithm of Random-Bandit
estimates Qπh(s, a) for the random policy (π) for each action
(a) applicable in the current state (s) for horizon h and re-
turns â = argmaxaQ

π(s, a).

Introduction
The planner Random-Bandit has been implemented as a
component of Prost (Keller and Eyerich 2012) as it relies
on many existing functionalities in Prost. Prost is the state-
of-the-art search-based online planner for RDDL domains.
Figure 1 shows the schematic diagram of the entire plan-
ning system. RDDLSim (Sanner 2010) is the RDDL server
used for evaluation in the competition. Prost initiates (and

RDDLSim Server (Java)

Prost Client (C++)

Initiate Connection
for each round:
  for each step:
    ...
      getAction(state)
    ...
  end-for
end-for
Close Connection

ε-GreedyAction(s)

state(s)
reward(r)

action(a)

state(s)

action(a)

Figure 1: Schematic Diagram

also terminates) the communication with the server, receives
and parses the RDDL domain and problem files, and initial-
izes the required data structures. The nested for loops in the

figure denote the evaluation loop in which Prost returns an
action for the current state to the server and receives the re-
ward and next state from the server. At each planning step
Prost calls the Random-Bandit function ε-GreedyAction(s)
with the current state s and returns the received action â to
the server instead of invoking its own planning routines.

The ε-Greedy Algorithm
The ε-Greedy algorithm estimates Qπ(s, a) for each action
a ∈ As applicable in state s for the random policy π for
horizon h and returns â = argmaxaQ

π(s, a). In Algorithm
1 below, the function random-number(0, 1) returns a random
number between 0 and 1, random-action(As\{â}) returns a
random action from the set As excluding action â, and next-
state(s, a) returns the next state s′ and reward r as a result
of taking action a in state s.

Algorithm 1 ε-GreedyAction(s)
1: Initialize Qπ(s, a)← 0,∀a ∈ As
2: Initialize N(a)← 0,∀a ∈ As
3: Initialize â← random-action(As)
4: repeat
5: r ← random-number(0, 1)
6: if r > ε then
7: a← â
8: else
9: a← random-action(As\{â})

10: end if
11: N(a)← N(a) + 1
12: (s′, r)← next-state(s, a)
13: R← r
14: s← s′

15: for i = 1..h do
16: (s′, r)← next-state(s, π(s))
17: R← R+ r
18: s← s′

19: end for
20: Qπ(s, a)← Qπ(s, a) + (R−Qπ(s, a))/N(a)
21: if Qπ(s, a) > Qπ(s, â) then
22: â← a
23: end if
24: until time-limit is not reached
25: return â
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Implementation Details
The important functionalities in Prost used in implementing
Random-Bandit are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL
domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The RandomWalk class for simulating a trajectory from
state s starting with action a and then following the ran-
dom policy π for h steps accounting for steps 12 through
19 in algorithm 1

3. The IDS class to estimate the best rollout horizon h for
the problem by means of iterative deepening search

Parameter Settings: The main parameters of the algorithm
are ε, the rollout horizon h, and the decision-time for each
planning step. ε is set to 0.5. The rollout horizon h is
initialized to the minimum of 7 or the value returned by the
IDS class and reduced to the number of remaining steps for
planning steps near the end of an episode. The decision-time
is set to 75% of the average time available for each step
re-computed at the beginning of each round.
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A2C-Plan: A Reinforcement Learning Planner

Alan Fern, Anurag Koul, Murugeswari Issakkimuthu and Prasad Tadepalli
School of EECS, Oregon State University

Corvallis, OR 97331, USA

Abstract

A2C-Plan is an offline planner that trains a policy network
through Reinforcement Learning (RL) using an Advantage
Actor-Critic (A2C) algorithm. It works in two phases - Train-
ing and Evaluation. In the training phase it trains a deep neu-
ral network (Goodfellow, Bengio, and Courville 2016) for the
problem instance using the A2C algorithm with simulated tra-
jectories and normalized rewards. In the evaluation phase it
uses the trained network to get an action for the current state
by means of a single feed-forward pass.

Introduction
Figure 1 shows the schematic diagram of the entire planning
system. There are three components: RDDLSim (Sanner
2010), the Java RDDL server used for evaluation in the
competition, a C++ dynamic library based on Prost (Keller
and Eyerich 2012), and a Python component consisting
of a PyTorch policy network. Prost is the state-of-the-art
search-based online planner for RDDL domains. The C++
dynamic library based on Prost acts as an intermediate
layer between the RDDL server and the PyTorch network
providing routines for communicating with the server,
running the evaluation loop and simulating trajectories
during the training phase.

RDDLSim Server (Java)

Prost-based C++ Dynamic Library

Initiate Connection
 
trainNetwork()

for each round:
  for each step:
    ...
      getAction(state)
    ...
  end-for
end-for

Close Connection

state(s)
reward(r)

action(a)

initConnection()

doAction()

Policy Network (PyTorch)

Library Interface

Initialize

Train Network

Run Network

simulate action

Start here 

train()

test()

Figure 1: Schematic Diagram

The Python component starts the control flow by call-
ing initConnection() in the dynamic library sending handles
of callback functions train() and test() for training and run-
ning the policy network respectively. The dynamic library
actually initiates (and also terminates) the communication
with the server, receives and parses the RDDL domain and
problem files, initializes the required data structures, and
starts the network training process by invoking the train()
callback function. The nested for loops in the dynamic
library denote the evaluation loop in which it returns an
action for the current state to the server and receives the
reward and next state from the server. At each planning
step the library invokes the test() callback function to run
the policy network with the current state s and returns the
received action â to the server.

Training the Policy Network
The policy network is a fully-connected network with two
hidden layers. The input layer has as many nodes as the
number of state-fluents (n) in the problem, the hidden layers
have 3∗n and 2∗n units respectively, and the final layer has
as many action nodes as the number of ground actions (m)
in the problem plus an additional value node. The hidden
layers have ReLU non-linear units and the output layer is a
softmax layer that computes a probability distribution over
the set of m actions. Figure 2 shows the network architec-
ture for a problem with 2 state-fluents and 4 ground actions.
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Actor-Critic Algorithms
Actor-Critic methods (Konda and Tsitsiklis 2000) bring
together the advantages of actor-only methods that directly
learn a parameterized policy and critic-only methods that
learn a value function by means of training a critic network
using simulations and using the learned critic values to
make gradient updates to the parameters of the policy
network. In A2C-Plan the actor and critic share the same
network up to the penultimate layer as shown in figure
2. The Advantage Actor-Critic (A2C) algorithm uses the
Q-Advantage of an action (Q(s, a) − V (s)) instead of the
value of a state V (s) to update the actor parameters.

Algorithm 1 below is just meant for outlining the steps
involved for one training episode. Details of the General-
ized Advantage Estimation (GAE) procedure used in the
implementation for updating actor-loss can be found in
(Schulman et al. 2016). The functions critic(s) and actor(s)
return the critic value and actor probabilities computed by
the network respectively, reset(env) resets the environment
and returns the initial state of an episode, sample(P) returns
an action sampled using the probability distribution P com-
puted by the actor network along with the probability pa of
the selected action a, and max and min are the maximum
and minimum reward values for the problem computed or
approximated by Prost. The entropy term e in the actor loss
function encourages exploration.

Algorithm 1 A2C(net, env)
1: repeat
2: Create Arrays V,R,L,E
3: Initialize i← 0, s← reset(env)
4: while not end-of-episode do
5: v ← critic(s), P ← actor(s)
6: (a, pa)← sample(P )
7: l← log(pa)
8: e←∑

pa∈P log(pa)

9: (s′, r)← next-state(s, a)
10: r ← r/(max−min)
11: V [i]← v, R[i]← r
12: L[i]← l, E[i]← e
13: s← s′, i← i+ 1
14: end while
15: critic-loss← actor-loss← 0
16: v̂ ← 0
17: for i = H . . . 1 do
18: v̂ ← γv̂ +R[i]
19: critic-loss← critic-loss + (V [i]− v̂)2
20: Adv← R[i] + γV [i+ 1].value− V [i].value
21: actor-loss← actor-loss - Adv * L[i] + E[i]
22: end for
23: Minimize critic-loss, actor-loss
24: until time-limit or memory-limit is not reached

Implementation Details
The Python - C++ interface is implemented using the ctypes
library (https://docs.python.org/3/library/ctypes.html). The

important functionalities in Prost used in the dynamic li-
brary are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL
domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The SearchEngine class functions estimating the maxi-
mum and minimum rewards for the problem instance

3. All the classes involved in simulating an action at a given
state to compute the reward and the next state

Parameter Settings:
1. The competition imposes a RAM limit of 4GB for the pro-

cess. RAM usage is periodically monitored in the Python
program while training the network and the training pro-
cess is terminated once a limit of 3.5GB is reached.

2. The total time (T ) available to solve a problem instance
needs to be divided between the training and evaluation
phases leaving enough time for other associated computa-
tions like the initial parsing process. Approximately 70%
of the total time T is set aside for just training the network.
To be precise, an untrained network is run for one-fifth
(15 for the competition) of the total number of episodes
(75 in the competition) to compute a time t and time for
final evaluation (te) is set to 2× t times the total number
of episodes and time for training is set to 75% of T − Te.

3. For domains with action pre-conditions some of the ac-
tions might not be applicable at a given state. When that
happens during training or evaluation an applicable action
with the highest probability is used instead.
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Abstract

We describe PROST-DD, our submission to the International
Probabilistic Planning Competition 2018. Like its predeces-
sor PROST, which already participated with success at the
previous IPPC, PROST-DD is based on the trial-based heuris-
tic tree search framework and applies the UCT ? algorithm.
The novelty of our submission is the heuristic used to initial-
ize newly encountered decision nodes. We apply an itera-
tive symbolic backward planning approach based on the de-
terminized task. Similarly to the SPUDD approach and recent
work in symbolic planning with state-dependent action costs,
we encode costs and reachability of states in a single decision
diagram. During initialization, these diagrams are then used
to query a state for its estimated expected reward. One ben-
efit of this heuristic is that we can optionally interweave the
standard heuristic of PROST, the IDS heuristic.

Introduction
The 6th edition of the International Probabilistic Planning
competition initially consisted of three different tracks: the
discrete MDP track, the continous MDP track, and the dis-
crete SSP track. In this paper, we will discuss our submis-
sion to the discrete MDP track, which consists of a novel
heuristic implemented into the PROST planner (Keller and
Eyerich 2012), the winner of the previous IPPC. The goal of
the discrete SSP track is to come up with a policy for a fac-
tored Markov decision process (MDP) with fixed initial state
and fixed horizon. The reward is state-dependent and there
are no dead-ends. As in the previous IPPC, the language to
model the planning tasks is the Relational Dynamic Influenc
Diagram (RDDL) language (Sanner 2010), and planners are
evaluated by executing 75 runs per instance and comparing
the average accumulated reward.

The PROST planner is based on the trial-based heuristic
tree search framework (THTS) (Keller and Helmert 2013)
which allows to mix several ingredients to compose an any-
time optimal algorithm for finite-horizon MDPs. One of
these ingredients is the state-value initialization (or: heuris-
tic) used to give an initial estimate for previously unknown
states. Our submission exchanges the iterative deepening
search (IDS) heuristic, the original heuristic implemented
in PROST, with a heuristic based on backward symbolic
search (BSS) on the determinized task. On the one hand, this
approach can be compared to SPUDD (Hoey et al. 1999), a

stochastic planning approach using decision diagrams. On
the other hand, it can be compared to recent work on sym-
bolic planning for tasks with state-dependent action costs
(Speck, Geißer, and Mattmüller 2018).

Before we describe our heuristic, we quickly introduce
the THTS framework and the setup of the PROST planner
in the previous IPPC. The next section then explains the BSS
heuristic, before we finally sketch how we can interweave
BSS and IDS, to come up with a stronger heuristic for more
challenging tasks.

Trial-based Heuristic Tree Search
The trial-based heuristic tree search (THTS) framework
(Keller and Helmert 2013) allows to model several well-
known probabilistic search algorithms in one common
framework. It is based on the following ingredients: heuris-
tic function, backup function, action selection, outcome se-
lection, trial length, and recommendation function. Inde-
pendent of the specific ingredients, the general tree search
algorithm maintains a tree of alternating decision and chance
nodes, where a decision node contains a state s and a state-
value estimate based on previous trials. A chance node con-
tains a state s, an action a and a Q-value estimate, which es-
timates the expected value of action a applied in state s. The
algorithm performs so-called trials, until it either computed
the optimal state-value estimate of the state in the root node
of the tree, or until it is out of time. A THTS trial consists
of different phases: the selection phase traverses the tree ac-
cording to action and outcome selection until a previously
unvisited decision node is encountered. Then, in the expan-
sion phase, this selected node is expanded, where for each
action a child node is added to the tree and initialized with a
heuristic value according to the heuristic function. The trial
length parameter decides if the selection phase starts again,
or if the backup phase is initiated. In this phase, the visited
nodes are updated in reversed order according to the backup
function. A trial finishes when the backup function is called
on the root node. In the case that the algorithm is out of
time, the recommendation function recommends which ac-
tion to take, based on the values of the child nodes. For more
information on the THTS algorithm we recommend the orig-
inal THTS paper (Keller and Helmert 2013), as well as the
PhD thesis of T. Keller (Keller 2015) which introduces rec-
ommendation functions and contains a thorough theoretical
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and empirical evaluation of a multitude of algorithms real-
ized within this framework.

Our submission is based on the PROST configuration
of the IPPC 2014, together with a novel heuristic function.
Before we describe this heuristic, we quickly mention the
other ingredients used in our configuration. The action se-
lection function is based on the well-known UCB1 formula
(Auer, Cesa-Bianchi, and Fischer 2002) which has a fo-
cus on balancing exploration versus exploitation. The out-
come selection is based on Monte-Carlo sampling and sam-
ples outcomes according to their probability, with the addi-
tional requirement that the outcome was not already marked
as solved by the backup function. This backup function is
a combination of Monte-Carlo backups and Full Bellman
backups, and weights outcomes proportionally to their prob-
ability. It allows for missing (i.e. non-explicated) outcomes
and also for labeling nodes as solved, where a node is solved
if its optimal value estimation is known. These ingredients
are the same used in the IPPC 2014. For the recommenda-
tion function, we apply the most played arm recommenda-
tion (Bubeck, Munos, and Stoltz 2009), which recommends
one of the actions that have been selected most often in
the root node (uniformly at random). This recommendation
function was shown (Keller 2015) to be superior in combi-
nation with the other ingredients.

Backward Symbolic Search Heuristic (BSS)
The Backward Symbolic Search Heuristic (BSS) exploits the
efficiency of symbolic search and the compactness of sym-
bolic data structures in form of decision diagrams. More
precisly, we use Algebraic Decision Diagrams as the under-
lying symbolic data structure. Algebraic Decision Diagrams
(Bahar et al. 1997) represent algebraic functions of the form
f : S → R ∪ {−∞,∞}. Formally, an ADD is a directed
acyclic graph with a single root node and multiple terminal
nodes. Internal nodes correspond to binary variables, and
each node has two successors. The low edge represents that
the current variable is false, while the high edge represents
that the current variable is true. Evaluation of a function
then corresponds to the traversal of the ADD according to
the assignment of the variables.

The main idea of BSS is to determinize a given MDP
while representing the MDP as decision diagrams with a
subsequent backward exploration of the state space. Re-
cently, Speck, Geißer, and Mattmüller (2018) showed how
symbolic search can be applied to deterministic planning
tasks with state-dependent action costs. Similar to their
work, we perform a symbolic backward search on the deter-
minized MDP which corresponds to a classical planning task
with state-dependent action costs. This backward search re-
sults in multiple ADDs, where each ADD represents states
associated with the maximum reward that can be achieved
from the corresponding states. More precisely, BSS can be
divided into three parts. First, a given MDP is determinized
(all-outcome or most-likely). Second, a backward breadth-
first search is performed, with the number of backward plan-
ning steps equal to the horizon. In each backward planning
step we obtain an ADD which maps reachable states to re-
wards (symbolic layers). Finally, during the actual search

the precomputed rewards (stored in decision diagrams) are
used to evaluate state actions pairs, i.e. Q-values. In the
following, we will explain each step in more detail.

Let a be an action of a given MDP. Action a has an empty
precondition and effects p(x′ := ¬x) = 1, p(y′ := 1) = 0.6
and p(y′ := 0) = 0.4. In other words, action a always
negates the value of x and sets y to 1 (0) with probability of
0.6 (0.4). Finally, the reward function of action a is defined
as R(s, a) = 2 + 5 · s(y), where s(y) is the value of y in
state s. In the initial step, action a is determinized (here:
most-likely determinization) and represented as a transition
relation in form of an ADD mapping state pairs consisting of
predecessors S and successors S′ to 1 (true) or 0 (false). Fig-
ure 1 depicts the ADD which represents action a as transi-
tion relation after applying the most-likely determinization,
i.e. only outcomes with a probability of 0.5 are considered
1. Finally, the reward function is added to the transition rela-
tion of a. If we transform the reward to a negative value, we
obtain a transition relation representing costs which is anal-
ogous to the formalization of Speck, Geißer, and Mattmüller
(2018). This transformation of an action is applied to each
action which results in a determinized planning task with
state-dependent action costs.

The symbolic backward search starts with all states asso-
ciated with zero costs as shown on the left side of Figure
2. We perform h backward steps where h is equal to the
horizon. Each backward step creates a symbolic Layer Li,
which stores for each state the maximal reward which can
be achieved in the remaining i steps. In Figure 2, after one
backward step (L1) we can obtain a reward of 2 or 7 by
applying an action. Note that there can be states where no
action can be applied which is represented by a reward of
−∞. Finally, we initialize the value of a state s with action
a as follows: let i be the number of remaining steps and let
S′s,a be the set of possible successor states of applying ac-
tion a in state s, i.e. S′s,a = {s′|p(s′|s, a) > 0}. The initial
Q-value of a state action pair is defined as

Qinit(s, a) =

∑
s′∈S′

s,a
Li−1(s′)

|S′s,a|
.

In other words, we take the average of the precomputed re-
wards of all successor states of predecessor state s with re-
spect to action a. In the following, we present how we can
combine this heuristic with the usual forward search heuris-
tic applied by the PROST planner.

Combining explicit forward and symbolic
backward search heuristics

One property of the symbolic backward search heuristic is
that it explores the whole deterministic task and collects all
states and rewards reachable from the end of the horizon.
While this is certainly easier for the determinized task it still
is a hard problem and as a result we might only have results
for parts of the horizon. In this case, we can make use of

1This may contrast with some other notions of most-likely,
namely that most-likely usually means only accepting the most-
likely outcome.
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Figure 1: Transformations of action a. Action a has an empty precondition and effects p(x′ := ¬x) = 1, p(y′ := 1) = 0.6 and
p(y′ := 0) = 0.4. Functions related to action a are depicted as ADDs. In the middle the determinized transition relation and
on the right the final transition relation with rewards.
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Figure 2: Visualization of symbolic backward search start-
ing with all states associated with zero costs. At each back-
ward step, all states leading to the previous state s are stored
in an ADD called Layer Li and mapped to the maximum re-
ward which can be achieved from s in the remaining i steps.

the original heuristic implemented in the PROST planner,
which is based on iterative deepening search (IDS).

The IDS heuristic also performs a determinization of the
probabilistic task, and then conducts a depth-first search to
compute the maximal reward reachable in the next d steps.
The value of d is computed before search starts and usually
depends on the complexity of the domain and its transition
functions. The IDS heuristic can therefore be seen as an
explicit forward search algorithm which complements our
symbolic backward search approach. While our heuristic
computes maximal rewards from the end of the horizon up
to some step i, IDS computes the maximal reward reachable
in the next d steps. Therefore, whenever we are not able to
compute all layers, we combine both heuristics by querying
the backward search value of the last layer and add the value
estimated by IDS (with depth corresponding to the maximal
layer). This can also be seen as a portfolio approach: if we
are able to build all layers in the symbolic search we rely

solely on our heuristic. If the task is so complex that we
are not even able to build a single layer we only rely on the
IDS heuristic (and have a setup very similar to the previous
IPPC configuration). In all other cases we interweave both
heuristics in order to generate an initial state value estimate
which is better than when we would solely rely on a single
heuristic.

Competition Analysis
Now that the competition is over we present a brief analysis
of some of the results (Keller 2018b). The two versions of
our planner differ only in the heuristics. Version 1 computes
the BSS heuristic based on a most-likely determinization,
while version 2 is based on an all-outcome determinization.
We are especially interested in a comparison to the base-
line planners (the PROST planner configurations of 2011
and 2014), since our planner mostly differs in the heuris-
tic.2 This year’s IPPC consisted of eight domains with 20
instances each, resulting in a total of 160 instances. It turns
out that grounding was a major challenge this year. For ex-
ample, the hardest Academic Advising instance has more
than 11 billion grounded actions, due to the combinatorial
blowup (5 out of 269 actions are applicable concurrently).
In total, our planner was unable to ground 31 instances.
This certainly warrants investing more research effort into
the grounding of concurrent actions. Regarding the remain-
ing instances, the PROST-DD planner crashed during search
in 16 instances, mainly in the Earth observation domain due
to a bug. Table 1 shows the average rewards of our planner
(bug fixed) compared to the PROST versions of the IPPCs
2011 and 2014 on the Earth Observation domain. The dif-
ferences in performance are minor.

2We additionally fixed some bugs of the PROST planner which
were mostly concerned with not exceeding the memory limit (the
baseline planners only used 2GB RAM). Unfortunately, we intro-
duced a bug which led to a crash in most of the Earth Observation
domain instances; otherwise our planner’s score would have ex-
ceeded the baseline score.
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PROST-DD PROST

ID most-likely (v1) all-outcome (v2) 2011 2014

1 -8.84 -8.92 -15.95 -8.49
2 -486.75 -483.91 -478.11 -484.93
3 -704.89 -709.97 -697.33 -714.44
4 -1574.65 -1600.60 -1591.32 -1616.31
5 -649.13 -644.63 -643.91 -672.15
6 -239.01 -236.27 -237.88 -248.41
7 -39.40 -39.65 -40.79 -42.04
8 -431.67 -429.09 -455.09 -455.47
9 -1355.19 -1355.19 -1291.91 -1278.41

10 -3203.95 -3222.25 -3167.59 -3163.08
11 -820.28 -819.43 -833.20 -825.21
12 -1668.00 -1693.24 -1657.35 -1665.31
13 -1919.39 -1922.29 -1841.96 -1839.17
14 -10099.60 -10103.80 -9957.04 -9827.79
15 -2645.88 -2627.17 -2588.33 -2775.01
16 -353.41 -351.64 -380.27 -368.68
17 -1875.48 -1875.48 -1791.63 -1736.52
18 -3186.06 -3186.60 -2989.44 -2843.33
19 -5170.25 -5114.09 -4954.21 -4825.60
20 -12702.90 -12665.50 -12731.80 -12622.90

Table 1: Average reward of the PROST-DD planner (version
1 and version 2) compared to the PROST versions of the
IPPCs 2011 and 2014 on the Earth Observation domain.

The key question remains: has the BSS heuristic paid off?
To answer this question, we analyze the number of tasks for
which it was possible to compute at least one layer, which
meant that the BSS heuristic could also be used during the
search. Unfortunately, it turns out that it was only possible to
compute at least one layer in 23 instances. This is certainly
due to the fact that the domains of this years IPPC were
more challenging compared to previous problems of former
IPPCs. The BSS heuristic was mostly succesful in the do-
mains Academic Advising and Push Your Luck. In both do-
mains, the performance of both configurations was evenly
good, and superior to other planners. The heuristic compu-
tation took around 10% of the search time. In the Manu-
facturer and Cooperative Recon domains the heuristic was
unable to generate a single layer and thus consumed time
in the precomputation phase without providing useful infor-
mation. This might be a reason for the low performance.
However, once computed the BSS heuristic is informative
and helpful. This certainly shows that the heuristic has po-
tential, but needs to be more efficient, especially when faced
with large and difficult problems. We already have some
ideas for such improvements. Interestingly, we also outper-
formed other planners in Wildlife Preserve, even though we
use the same heuristic as the baseline planner in this case.
This may be due to the additional memory we use, but also
due to some modifications to the grounding of actions which
differs slightly from the baseline.

In summary, the heuristic presented here has paid off in
some domains and has affected the planner’s performance
in others due to loss of time. PROST-DD proved to be a
competitive planner and the BSS heuristic showed promis-
ing results.

Our planner submission is available in the official IPPC
repositories on Bitbucket (Keller 2018a). We fixed the bug

which led to crashes in the Earth Observation domain in the
branch ipc2018-disc-mdp. The original competition version
is available on the branch ipc2018-disc-mdp-competition.

Acknowledgments
David Speck was supported by the German National Sci-
ence Foundation (DFG) research unit FOR 1513 on Hy-
brid Reasoning for Intelligent Systems (http://www.
hybrid-reasoning.org).

References
[Auer, Cesa-Bianchi, and Fischer 2002] Auer, P.; Cesa-

Bianchi, N.; and Fischer, P. 2002. Finitetime Analysis
of the Multiarmed Bandit Problem. Machine Learning
47:235–256.

[Bahar et al. 1997] Bahar, R. I.; Frohm, E. A.; Gaona, C. M.;
Hachtel, G. D.; Macii, E.; Pardo, A.; and Somenzi, F.
1997. Algebraic decision diagrams and their applications. In
Proceedings of the International Conference on Computer
Aided Design (ICCAD 1993), volume 10, 171–206.

[Bubeck, Munos, and Stoltz 2009] Bubeck, S.; Munos, R.;
and Stoltz, G. 2009. Pure Exploration in Multiarmed Ban-
dits Problems. In Algorithmic Learning Theory, 20th Inter-
national Conference (ALT 2009), 23–37.

[Hoey et al. 1999] Hoey, J.; St-Aubin, R.; Hu, A.; and
Boutilier, C. 1999. SPUDD: Stochastic planning using de-
cision diagrams. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, 279–288.

[Keller and Eyerich 2012] Keller, T., and Eyerich, P. 2012.
PROST: Probabilistic Planning Based on UCT. In Proceed-
ings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling (ICAPS 2012), 119–127.

[Keller and Helmert 2013] Keller, T., and Helmert, M. 2013.
Trial-based Heuristic Tree Search for Finite Horizon MDPs.
In Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling (ICAPS 2013),
135–143.

[Keller 2015] Keller, T. 2015. Anytime Optimal MDP Plan-
ning with Trial-based Heuristic Tree Search. Ph.D. Disser-
tation, University of Freiburg.

[Keller 2018a] Keller, T. 2018a. Bitbucket repository
of the ippc 2018 planners. https://bitbucket.
org/account/user/ipc2018-probabilistic/
projects/EN. [Online; accessed 08-October-2018].

[Keller 2018b] Keller, T. 2018b. Presentation slides of the
ippc 2018. https://ipc2018-probabilistic.
bitbucket.io/results/presentation.pdf.
[Online; accessed 08-October-2018].

[Sanner 2010] Sanner, S. 2010. Relational Dynamic Influ-
ence Diagram Language (RDDL): Language Description.

[Speck, Geißer, and Mattmüller 2018] Speck, D.; Geißer, F.;
and Mattmüller, R. 2018. Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams. In Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 250–258.

16


