Random-Bandit: An Online Planner

Alan Fern, Murugeswari Issakkimuthu and Prasad Tadepalli

School of EECS, Oregon State University Corvallis, OR 97331, USA

Abstract

Random-Bandit is an online planner based on the ϵ -greedy algorithm for multi-armed bandit problems (Kuleshov and Precup 2000). Every planning step is regarded as an independent multi-armed bandit problem at the current state with the set of applicable actions as the arms of the bandit. The ϵ -greedy algorithm for the multi-armed bandit problem estimates the average reward of each arm by pulling the current best arm with probability $1 - \epsilon$ and one of the remaining arms with probability ϵ , and finally returns the arm with the highest average reward. The ϵ -greedy algorithm of *Random-Bandit* estimates $Q_h^{\pi}(s, a)$ for the random policy (π) for each action (a) applicable in the current state (s) for horizon h and returns $\hat{a} = arg \max_a Q^{\pi}(s, a)$.

Introduction

The planner *Random-Bandit* has been implemented as a component of *Prost* (Keller and Eyerich 2012) as it relies on many existing functionalities in *Prost*. *Prost* is the state-of-the-art search-based online planner for *RDDL* domains. Figure 1 shows the schematic diagram of the entire planning system. *RDDLSim* (Sanner 2010) is the *RDDL* server used for evaluation in the competition. *Prost* initiates (and

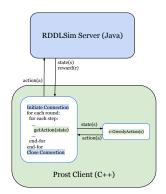


Figure 1: Schematic Diagram

also terminates) the communication with the server, receives and parses the *RDDL* domain and problem files, and initializes the required data structures. The nested *for* loops in the figure denote the evaluation loop in which *Prost* returns an action for the current state to the server and receives the reward and next state from the server. At each planning step *Prost* calls the *Random-Bandit* function ϵ -GreedyAction(s) with the current state s and returns the received action \hat{a} to the server instead of invoking its own planning routines.

The ϵ -Greedy Algorithm

The ϵ -Greedy algorithm estimates $Q^{\pi}(s, a)$ for each action $a \in A_s$ applicable in state s for the random policy π for horizon h and returns $\hat{a} = arg \max_a Q^{\pi}(s, a)$. In Algorithm 1 below, the function random-number(0, 1) returns a random number between 0 and 1, random-action($A_s \setminus \{\hat{a}\}$) returns a random action from the set A_s excluding action \hat{a} , and next-state(s, a) returns the next state s' and reward r as a result of taking action a in state s.

Algorithm 1 ϵ -GreedyAction(s)
1: Initialize $Q^{\pi}(s, a) \leftarrow 0, \forall a \in A_s$
2: Initialize $N(a) \leftarrow 0, \forall a \in A_s$
3: Initialize $\hat{a} \leftarrow random-action(A_s)$
4: repeat
5: $r \leftarrow random-number(0,1)$
6: if $r > \epsilon$ then
7: $a \leftarrow \hat{a}$
8: else
9: $a \leftarrow \text{random-action}(A_s \setminus \{\hat{a}\})$
10: end if
11: $N(a) \leftarrow N(a) + 1$
12: $(s', r) \leftarrow \text{next-state}(s, a)$
13: $R \leftarrow r$
14: $s \leftarrow s'$
15: for $i = 1h$ do
16: $(s', r) \leftarrow \text{next-state}(s, \pi(s))$
17: $R \leftarrow R + r$
18: $s \leftarrow s'$
19: end for
20: $Q^{\pi}(s,a) \leftarrow Q^{\pi}(s,a) + (R - Q^{\pi}(s,a))/N(a)$
21: if $Q^{\pi}(s, a) > Q^{\pi}(s, \hat{a})$ then
22: $\hat{a} \leftarrow a$
23: end if
24: until time-limit is not reached
25: return \hat{a}

Implementation Details

The important functionalities in *Prost* used in implementing *Random-Bandit* are

- 1. The *IPPCClient* class for establishing (and terminating) the connection with the *RDDL* server, parsing the *RDDL* domain and problem files and initializing data structures, and running the evaluation loop receiving state and reward signals and sending actions
- 2. The *RandomWalk* class for simulating a trajectory from state *s* starting with action *a* and then following the random policy π for *h* steps accounting for steps 12 through 19 in algorithm 1
- 3. The *IDS* class to estimate the best rollout horizon h for the problem by means of iterative deepening search

Parameter Settings: The main parameters of the algorithm are ϵ , the rollout horizon h, and the decision-time for each planning step. ϵ is set to 0.5. The rollout horizon h is initialized to the minimum of 7 or the value returned by the *IDS* class and reduced to the number of remaining steps for planning steps near the end of an episode. The decision-time is set to 75% of the average time available for each step re-computed at the beginning of each round.

Acknowledgements

Many thanks to Dr. Thomas Keller for his help with resolving problems connected to *Prost* functionalities.

References

Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Planning Based on UCT. In *Proceedings of the International Conference on Automated Planning and Scheduling*.

Kuleshov, V., and Precup, D. 2000. Algorithms for the multi-armed bandit problem. *Journal of Artificial Intelligence Research* (1) 1–48.

Sanner, S. 2010. Relational Dynamic Influence Diagram Language (RDDL): Language description.