
Random-Bandit: An Online Planner

Alan Fern, Murugeswari Issakkimuthu and Prasad Tadepalli
School of EECS, Oregon State University

Corvallis, OR 97331, USA

Abstract

Random-Bandit is an online planner based on the ε-greedy
algorithm for multi-armed bandit problems (Kuleshov and
Precup 2000). Every planning step is regarded as an inde-
pendent multi-armed bandit problem at the current state with
the set of applicable actions as the arms of the bandit. The
ε-greedy algorithm for the multi-armed bandit problem esti-
mates the average reward of each arm by pulling the current
best arm with probability 1−ε and one of the remaining arms
with probability ε, and finally returns the arm with the highest
average reward. The ε-greedy algorithm of Random-Bandit
estimates Qπh(s, a) for the random policy (π) for each action
(a) applicable in the current state (s) for horizon h and re-
turns â = argmaxaQ

π(s, a).

Introduction
The planner Random-Bandit has been implemented as a
component of Prost (Keller and Eyerich 2012) as it relies
on many existing functionalities in Prost. Prost is the state-
of-the-art search-based online planner for RDDL domains.
Figure 1 shows the schematic diagram of the entire plan-
ning system. RDDLSim (Sanner 2010) is the RDDL server
used for evaluation in the competition. Prost initiates (and

RDDLSim Server (Java)

Prost Client (C++)

Initiate Connection
for each round:
 for each step:
 ...
 getAction(state)
 ...
 end-for
end-for
Close Connection

ε-GreedyAction(s)

state(s)
reward(r)

action(a)

state(s)

action(a)

Figure 1: Schematic Diagram

also terminates) the communication with the server, receives
and parses the RDDL domain and problem files, and initial-
izes the required data structures. The nested for loops in the

figure denote the evaluation loop in which Prost returns an
action for the current state to the server and receives the re-
ward and next state from the server. At each planning step
Prost calls the Random-Bandit function ε-GreedyAction(s)
with the current state s and returns the received action â to
the server instead of invoking its own planning routines.

The ε-Greedy Algorithm
The ε-Greedy algorithm estimates Qπ(s, a) for each action
a ∈ As applicable in state s for the random policy π for
horizon h and returns â = argmaxaQ

π(s, a). In Algorithm
1 below, the function random-number(0, 1) returns a random
number between 0 and 1, random-action(As\{â}) returns a
random action from the set As excluding action â, and next-
state(s, a) returns the next state s′ and reward r as a result
of taking action a in state s.

Algorithm 1 ε-GreedyAction(s)
1: Initialize Qπ(s, a)← 0,∀a ∈ As
2: Initialize N(a)← 0,∀a ∈ As
3: Initialize â← random-action(As)
4: repeat
5: r ← random-number(0, 1)
6: if r > ε then
7: a← â
8: else
9: a← random-action(As\{â})

10: end if
11: N(a)← N(a) + 1
12: (s′, r)← next-state(s, a)
13: R← r
14: s← s′

15: for i = 1..h do
16: (s′, r)← next-state(s, π(s))
17: R← R+ r
18: s← s′

19: end for
20: Qπ(s, a)← Qπ(s, a) + (R−Qπ(s, a))/N(a)
21: if Qπ(s, a) > Qπ(s, â) then
22: â← a
23: end if
24: until time-limit is not reached
25: return â

Implementation Details
The important functionalities in Prost used in implementing
Random-Bandit are

1. The IPPCClient class for establishing (and terminating)
the connection with the RDDL server, parsing the RDDL
domain and problem files and initializing data structures,
and running the evaluation loop receiving state and reward
signals and sending actions

2. The RandomWalk class for simulating a trajectory from
state s starting with action a and then following the ran-
dom policy π for h steps accounting for steps 12 through
19 in algorithm 1

3. The IDS class to estimate the best rollout horizon h for
the problem by means of iterative deepening search

Parameter Settings: The main parameters of the algorithm
are ε, the rollout horizon h, and the decision-time for each
planning step. ε is set to 0.5. The rollout horizon h is
initialized to the minimum of 7 or the value returned by the
IDS class and reduced to the number of remaining steps for
planning steps near the end of an episode. The decision-time
is set to 75% of the average time available for each step
re-computed at the beginning of each round.

Acknowledgements
Many thanks to Dr. Thomas Keller for his help with
resolving problems connected to Prost functionalities.

References
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proceedings of the International
Conference on Automated Planning and Scheduling.
Kuleshov, V., and Precup, D. 2000. Algorithms for the
multi-armed bandit problem. Journal of Artificial Intelli-
gence Research (1) 1–48.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language description.

